POSITION SCALE AND ROTATION INVARIANT TARGET
RECOGNITION USING RANGE INAGERY(U) AIR FORCE INST OF
TECH WRIGHT-PRTTERSON AFB OH SCHOOL OF ENGI

S E TROXEL DEC 87 AFIT/GEQ/ENG/870-3

y
1,
P
:
Ry
3
i
p
?! | “il= s
' : |_ s _'
) w
‘ Ilm Al
J e
28 s pus
= |i=
y
i Voo BT RURTA (TAT AN
\/
4
()

u - ® ® @ "‘T_“ o -

R SR HIN o R OO ~‘¢‘| RN
.\, e b e, DOOIOAOALN n,; A
‘f' oW .b‘ ", 3 ‘:l' ".l‘ 'u‘h'; "c‘l' ! l'n ..I' N "l’ . ’

5t OO R ‘o OO t.l
' § l R 9
c‘l‘ " i.o' .u ".0 e, o" . » |‘i 0"" y g

..... 3 Y - LAkl dnd A0 A had dod Sall Sk Boll sioh Gk ~abo-ahoaking Sie Adbe St &:a A0 Ao s]

et

AD-A188 828

(4NV LANILYy UMb,y NAMNLZ N\ LM LINIEY ALY Y AINLMIY L
TARGET RECOGNITION USING RANGE IMAGERY QQ\D
THESIS
Steven E. Troxel]]
g ~. First Lieutenant, USAF | ;
! AFIT/GEQ/ENG/87D-3 Py :
E i
1)
' e
; Dhﬁbuﬁonpnnfm;zqu .
)
-
I.I, ' DEPARTMENT OF THE AIR FORCE ,)
-ﬁs - AIR UNIVERSITY » A -
*’3' AIR FORCE INSTITUTE OF TECHNOLOGY]
:.'}E:;‘ . Wright-Patterson Air Force Base, Ohio j
,v,.‘n !
e
o4 88 2
::.'1:“
..“‘I A ——

L)
b

L | 7 8,500 o U g We & 2 BCACA NN SO PO AR MPISOICPAN L T
”:fc-ﬁ’t'!.!ﬂl‘«f@’t?t'th’v st W T R UMW DO

g b ab Al _abe Ades Ake die A
>

N AFIT/GEO/ENG/87D-3

N0

el A,

S

L.

Sl LY,

~ POSITION, SCALE, AND ROTATION INVARIANT
TARGET RECOGNITION USING RANGE IMAGERY

[/

B | THESIS

Steven E. Troxel D i ic

B First Lieutenant, USAF ELECTE N
s AFIT/GEO/ENG/87D-3 o FEBO 9 1388f

Approved for public release; distribution unlimited.

AFIT/GEO/ENG/87D-3

POSITION, SCALE, AND ROTATION INVARIANT
TARGET RECOGNITION USING RANGE IMAGERY

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University

In Partial Fulfillment of the

Requirements for the Degree of a
o \
Master of Science in Electrical Engineering e limy }
. $0
s

i Accesion For
mls CRA&I t

|

UTie
Steven E. Troxel, B.S.E.E 3 ij r“.{\(rlmo?_l;:i.‘ed 8
o | Justifcarc:
First Lieutenant, USAF l,_.; - PO]
PEY e
FOnstribition
December 1987 .

Avanatiity Cooes

i Zvc.'? ;m;?. i ;;rﬂﬂ
Drst ! Speciat

Al

Approved for public release; distribution unlimited.

Acknowledgments

There are many individuals who deserve thanks for thier support during this
research project. First, I am deeply indebted to my thesis advisor, Dr. Steven K. Rogers,
for his support and constant encouragement during the entire thesis effort. I also thank
Dr. Rogers for giving enough rope to allow me to perform pure research and yet not
enough rope to hang myself with. There is a very fine line with a time limited project. I
thank Dr. Matthew Kabrisky for making research rewarding. If I told him I noticed that
the sun rose in the east, I'm sure he would praise me for noticing. I would also like to
thank Dr. James P. Mills for his timely suggestions and Dan Zambon for his system level
support in the Information Systems Laboratory. A very special thank you goes to Capt.
Dennis Ruck for all his help with ADA programming, VMS, and TROFF. This project

would have been much harder without him.

Most importantly, I express deep appreciation to my wife, Shelley, and my children,
Shawn and Stacey. The many hours of study time and computer time needed for this

type of project requires a very special and understanding home team to see it through.

I’'m thankful that I was given such a team.

Finally, I dedicate this work to the memory of my mother, Dr. Marcia Hamre

Troxel, for giving me the drive and teaching me about dedication to the accomplishment

of a task.

%

LY

o) v OO Qe -

T Ve

P - -
-

-l
-

-

AL B 4

. N = -
Can ot h a

O

e - - - -~
PR A s Xl ot

[

‘I--‘
- et

'
IUTOOODGOCEN)
\..’?.'_ ‘,'l..u’\.;': .

",
GJ.

Table of Contents

Acknowledgments

..

List of Figures

...

List of Tables

..

Abstract

...

...

PUIPOSE .ttt et ee et e st saesen s ssae s e s et s sat e shnaasneeaseessras

1.1.

1.2, BACKZTOUNAooitiiiiiiiiiieenrcentitirnesres e ssteseesseesaessessts st et e ss sanesmsesnness st ssnssane
1.3. Problem Definitionc.ccouiiiceveniimneinneesieiesinsenac s snsesessseesssesssesssases
1.4. Scope of Thesis
1.5. Approach and ASSUMPHONSccicerverrienrierrensensuesseessesscsseessnsssseseessaesssessessseees
1.

6. Overview of Thesis

...

...

I1. Segmenting Targetsccccoevcveeennenns e ereeeree et e e e et e b et ta et e e ennenabaeneesreeneenn

III. The PSRI Feature Space

..

3.1. Creation of PSRI Space
3.2. Use of PSRI Space

IV, ClaSSifICAHONcocveiiiiiiiieiiinneeresetieenteseeessenssesseseneseessesesesssasssensnsseesseasne sssssanas
4.1, INIOQUCHION ...cveecieiiinicceitireeecttentensecre s ae st sene e e suneseeeees e ansessesessestaasecmsesnsenen
4.2. Correlation Peak Analysis

..

V. COITRIAON ...coiiiiecicievereeeeieeeeseeetaeeseesesssnnsaeassesesssessssassessssssssssnssssseesessessssssnssnssseses
5.1 INITOAUCHION ...ueeeieeeiieeeecieeietrteee e seseieaeeeeeeesessststasenee sassasssssssessessssansnsessesessessssans
5.2. Goodman - Schwarz Correlation

..

V1. Experimental RESUILSccceecriieiiiitiereiee sttt ssbe st
G.1. INIPOAUCHOM ..ccovvueereeerrieeeirnrreeesssrresessessesessssseesssssresesssssasessasesresssssssesessassnssassssen
6.2. Identification of Scale and ROLAHONccccceiriivveeriiirsrereererereescsenscesssrnnarassens
6.3, ClasSIfICAUONceievirvenreeniiiieresrereesssrneesessareesessasassesasesisssssassssassensessressensessssunee

6.3.1. EXperimental SEIUPcccoovviirremseesiniisircseiiiiesine et sesssssessessssens
6.3.2. DiStance MEASUTEMENLSccccovvrirrerrerireesneecsssesssensasssasssssasassensassesessssesanns
6.3.3. Neural NEtWOTKSccccveriirmirriiiiiiriiinerisrseesssasssirsesssessesnnerssssensssaassrasasssssassen
6.3.4. Space Domain Correlationccoeeviinninenniniinininnninenenienieee e

VII. Conclusions and Recommendationscccccverevevererveesieeecnnrecsnessscsnnserseesssssanes

CONCIUSIONSovvvniiiiiieerieiiicereieitteeriesseessteesseessassssassssesssaenssasstsesstesssasansesssessranas

II.
7.1.
T.2. RECOMMENAALIONScoeriiiiiirieeriesensssesssssssasssssssssssssssssasssssssssnsssssssnssennnsnsssssssns

iii

BOE] :‘n.l .l t, A

I Mo g
W, Q'“' MO0 ,AQ.A'uuqu',- Wty

Page

ii

- v ko

-~ -

40

Appendix A : Neural Networksccccceceveenenenne eetresre st e e s ee s et a e ree s b eans A-1

Appendix B : Computer Programscceceeueeeeruenne. vrerestraraes ceeeeerre et e et s eaee B-1

Bibliographyccccocvinncnnnnnenne. Ceereentee et ea e sa et en bt e an st nesraeaie RO BI-1

VLA ottt re sttt st est e e s e e shee e er e et ebae e sebe s ane st e beseasaenreseeses b enaeneenaeatenne VI-1
iv

=
List of Figures
Figure Page
o
3.1 Oniginal TEMPIALE ..ocuiviiiieeeriiieice ettt ettt e 33
3.2 Magnitude Fourier Transform of Templateccccoeooiviieiiiiiiiie 33
. 3.3 Shifted, Scaled, and Rotated Version of Templatec...occoevivieereennnnn. 34
3.4 PSRI Space of Original TemPplateccccoeeeueveereiceeicieeceieee e 34
3.5 PSRI Space of Shifted, Scaled, and Rotated Templateccccceovevrenennne. 3-5
° 3.6 Correlation of Previous PSRI SpPacescccoovviviiviiiiveciieiie e 3-5
4.1 Example of an Autocorrelation Peakcccooeieviieiiviiiiiieiieeeeeeeee e 4-2
4.2 Example of a Crosscorrelation Peakccccevvuiiiiiiniiricee e 4-3
6.1 Range Image for Goodman - Schwarz Correlation Testcccocveeeeierenennnnee. 6-8
1
6.2 Order of Template SUDSECHONSccocueiverrereriieteeeecereeee e 6-9
6.3 Range Image for Testing with Partially Occluded Targetscccccovvuevnenne 6-10
A.1 Conceptual Diagram of a Multilayer Perceptroncocovvvvereeevvviveeesnenns A-2
o
¢
le
e
@ 1

Q'.
:.:u
Ky
'
L]
) List of Tables
)
. e Table Page
. 6.1 Correlation Peak Location for Template and Same Scale Targets 6-12
2 6.2 Correlation Peak Location for Template and 1/2 Scaled Rotated Targets 6-12
N
ne 6.3 Correlation Peak Location for Template and 1/4 Scaled Rotated Targets 6-12
. 6.4 Files for Set 1 EXPerimentsccooiiiiiieienrieiee ettt sttt s 6-13
E‘_ 6.5 Training Files for Set 2 EXperimentscoccceviiiiiiiciiinnneenrie e 6-14
T 6.6 TestFiles fOr Set 2 EXPEIMENLS weovrrrroeroooeeererreesoecerreseeesessoeeeeeessesesseserreen e 6-15
o 6.7 Class 1 Training Files for Set 3 Experimentscccoocivviininniniiiinnns 6-16
- 6.8 Class 2 Training Files for Set 3 Experimentscccovvvicvceeneniiiiiinnin 6-17
N
D - 6.9 Class 1 Test Files for Set 3 EXPErimentscoooeviviiinnnnieeeninen e 6-18
3 6.10 Class 2 Test Files for Set 3 EXPerimentsc.cococcovrinniiennioeneineee s 6-19
6.11 Classification Results for Set 1 Range Data ... 6-20
L o 6.12 Classification Results for Set 1 Binary Dataccc.cccooocccrrrerersresssssssscrronee 6-21
6.13 Classification Results for Set 2 Range Training Dataccccceoveeviinnnienn. 6-22
6.14 Classification Results for Set 2 Range Test Dataccccoocvveiieiceiniiieceennn. 6-23
: ® 6.15 Classification Results for Set 2 Binary Training Dataccocooeivinninnnne. 6-24
':" 6.16 Classification Results for Set 2 Binary Test Datacccccccevvieniioiiniiinnnnn 6-25
. 6.17 Classification Results for Class 1 Set 3 Range Training Datac.ccoeeeneee. 6-26
".)
: ¢ 6.18 Classification Results for Class 2 Set 3 Range Training Dataocoeee. 6-27
| ‘3 6.19 Classification Results for Class 1 Set 3 Range Test Datacccccvvvvvnennenee 6-28
: 6.20 Classification Results for Class 2 Set 3 Range Test Datacccocoiiiinnnns 6-29
]
,' C 6.21 Classification Results for Class 1 Set 3 Binary Training Datac...c....... 6-30
,: 6.22 Classification Results for Class 2 Set 3 Binary Training Datac.cc.cceeene 6-31
> 6.23 Classification Results for Class 1 Set 3 Binary Test Datacccccoeeeeins 6-32
D)
i ® 6.24 Classification Results for Class 2 Set 3 Binary Test Dataccooevinenns 6-33
!
‘ .
‘ vl

. , : - e o DEFOC O AU DRICH SR AOM 2 e Il 2
1 LAZUAALN LN BLUNAN FLraty PRSI LN A S O Lt LAY RIS A LN ER
;'.::,l._!v."ﬂ:.":.f;..'-’s“’",-‘a“.‘A'{’ AN R N N wily RN * * . h PR A Ar"“- ¥ RUCL MRS {8

"‘$.v.’:.-ln...;j,_l«
o

-
i

AFIT/GEO/ENG/87D-3

Abstract

This thesis explores a new approach to the recognition of tactical targets using a
multifunction laser radar sensor. Targets of interest were tanks, jeeps, and trucks.
Doppler images were segmented and overlaided onto a relative range image. The resul-
tant shapes were then transformed into a position, scale, and rotation invariant (PSRI)
feature space. The classifiation process used the correlation peak of the template PSRI
space and the target PSRI space as features. Two classification methods were imple-
mented: a classical distance measurement approach and a new biologically-based neural

network multilayer perceptron architecture.

Both methods demonstrated classification rates near 100% with a true rotation
invariance demonstrated up to 20 degrees. Neural networks were shown to have a dis-

tinct advantage in a robust environment and when a figure of merit criteria was applied.

A space domain correlation was developed using local normalization and multistage
processing to locate and classify targets in high clutter and with partially occluded tar-

gets.

ORGSR LWIREASIGE

........

1. Introduction

1.1 Purpose

For the purpose of this research effort, the process of target recognition is a two-
fold process of classifying and locating a target. The classification process answers the
question: "Is there something in the input scene that matches what I’'m looking for."
The locating process answers the question of "Where in the input scene is the thing I'm
looking for." The usefulness of target recognition is well documented but a truly auto-
nomous system is still unavailable. The focus of this research effort is in the classifying
area with a small section devoted to the locating process. The classification will be per-
formed in a feature space that is invariant to changes in position, scale, and rotation.
The input data is segmented targets containing gray scale intensity values which relate
information about the relative range or depth changes of the target. These templates now
contain 3-D information about the target which results in more classification informa-
tion. The classification process will also be performed on binary templates to determine
if the method of classification is making use of the added information contained in the

range data.

1.2 Background

A truly useful target recognition algorithm makes few or no assumptions on the

way the target will appear in a given scene.

" The target may vary in size, shape, orientation, and illumination, or may
even be partially obstructed by other objects. As a result, digital pattern
recognition machines require complex algorithms for managing even a small
number of the infinite possibilities of target variations, viewing angles and

scene clutter that may be encountered in a typical scene"[1:2].

The current state of target recognition is not able to address all of these variations.

However, much work has been done under the restriction of knowing the orientation of

1-1

AN R M o Lt AT TS b ¥ e h T e b e
y . U % _q"!l’c;l‘q!&!u!l‘o 4% 3%, ' '., », 4" ¥ , " 'Q!.:'\ -.0'-’1‘;.‘,& AR ‘w AW

| alaal ale ate abt abdalicalt skt dlA"ade~abt=alt =it oda o ot it e fui i ot Aad fiak et ot dad Ak el el dob Aok Sab A Bk Ao b Selsind Ak Sl ool Ao h il Y i A AN AR Ealiiall AACaRl ot

the target with respect to out-of-plane rotation[1;2;3;4,5;6].

An algorithm which has shown promising results is the AFIT algorithm. The AFIT
algorithm was originally proposed by Israeli Air Force Major Moshe Horev in his thesis,
"Picture Correlation for Automatic Machine Recognition" [4], and later implemented on
a VAX computer by Kobel and Martin [1]. The AFIT algorithm works on the assump-
tion that we already know that the target is within the input scene. It therefore deter-
mines the scale and rotation of the target in order to correlate and locate the target.
Kobel and Martin fully implemented the AFIT algorithm and tested it using visual
information. Results showed that the algorithm works when the dimensions of the
clutter is not similar to the target [1:77]. The algorithm works in the frequency domain
and one of the reported problems that hampered recognition was shadows of the target

« and changes in brightness across the target. These shadows and brightness changes pro-

duced dominate spatial frequency terms which caused the scale and rotation values to

differ from the theoretical. This suggests that visual information might not be the best

domain in which to perform the recognition.

Visual data has many problem areas in target recognition. If the environment for
recognition could be strictly controlled, visual data could prove to be adequate. How-
ever, for a recognition system to be robust in different environments (i.e. changes in
sunlight) visual data varies too much to be of use. Different types of data for possible
use include passive infrared or doppler and range data obtained with a laser radar. This

.
‘ research effort uses laser radar data for processing.

Range data is obtained either using a pulsed laser and computing time-of-flight
between the transmitted and received signal or using a CW modulated beam and
measuring the phase shift. A range image is obtained by using a scanning system to
sweep the beam over the scene [7:206). Therefore, assuming that the return signal is
digitized into an NxN array of pixels, each pixel will contain information relating to the

relative range of the sector of the input scene covered by that pixel. Now the input

1-2

A d® A A W - - .

. T T R WY e
RO S, _,qgl,c?l. KM NG 19-. ,t ERA

1)

scene data is unaficcted by changes in ambient illumination or shadow problems and the
frequency domain contains information about how the range is changing within the

scene.

This concept of using the frequency information of range data for target
classification appears to be an overlooked area of research. Grantham did a thesis using
model based range data of tanks and did correlation of these models [8]. Tong did a
thesis using true range data of tanks and trucks in background clutter to segment out
possible targets from a scene [9]. The range data provided information as to where the
relatively flat things with edges were located. Earlier work by Duda and others used
range data to define edges and some planar surfaces with office type scenes {7;10;11].
However, no one has used the fact that the changes in range data across a target have
spatial frequency information that is unique for different targets. Thus a possible area
for classification. If this turns out to be a unique idea, full credit for originality must go

to Dr. Steve Rogers [12].

1.3 Problem Definition

The thesis problem was to classify and locate a target within an input scene. This
process must be accomplished regardless of the target’s variation in position, size, and

rotation, and with scenes that contain high clutter (non-random noise).

1.4 Scope of Thesis

This thesis focused on classifying and locating a target within an input scene.
Laser range data was used in an attempt to show that this data contains more informa-
tion than visual data and can therefore lead to better classification. The classification
process was attempted both in and out of the frequency domain with each process
explored to determine if it’s the rate of change in the range data that produces the

classification.

1-3

2 ¢ GG IO, f
) Q‘g l;" .“‘jr":%’.i:dé‘gp‘f_IQ!@‘Q'D"")0

I Y ‘
OO WCIENIN 0

6

Al

AOAEO0
t."A‘,"'t,':t.‘_'

The Executive program written by Kobel and Martin was used for this study [1:Vol

11}. This program was used unmodified to perform the many Fourier transforms and
correlations needed. It was written using the Vax Ada programming language on the
Vax 11/780 computer. All the new programs used for classifying and locating were also

written using Vax Ada and written so as to insure compatibility with Executive.

1.5 Approach and Assumptions

The approach was to create segmented targets containing range data and transform
these targets into a position, scale, and rotation invariant (PSRI) feature space to deter-
mine the proper scale and rotation relationship between template and target. Next, the
proper features to be used for classification must be determined. By definition, the
proper features are any features that can separate the classes of objects that are being
classified. Classification methods both in and out of the frequency domain were to be
attempted. Comparisons were to be made between classification with range data and
classification with binary data to determine if the range data was being used and not just

the shape of the object.

The following assumptions were made during the course of this study:

1) The multisensor data was supplied from a number of target scenes. Images were
supplied as a digitized 256 X 256 array of numbers with each number represented
as 8 binary bits. The data included visual, laser radar, and infrared pictures.

2) The out-of-plane rotation of the target was known and templates at this orientation
were available. This restricts us to in - plane recognition.

3) The location, size, and in-plane rotation of the target were unknown prior to pro-
cessing. This requires a position, scale and rotation invariant algorithm.

4) The potential target was presented to the classifier segmented from the input scene.

5) The recognizer as a whole had no prior knowledge about the background informa-

tion of the scene.

1.6 Overview of Thesis

This thesis is structured in an order which would naturally flow if the proposed

recognition algorithm were to be carried out. The proposed algorithm is as follows:

14

\“._\v“\ "}““, 9. ‘ ‘F“
(LA N b S o A A)

' MO0 PR IO e GO A 4__. Ty A" Y3 WL Y
"‘:"l‘:‘*‘n"‘!"""‘!’*‘!" l"’."!‘.‘" 5“‘; “e') “"’!l' A'Q_n.l.|‘h, SASANNL [l.,-‘ SN ALK M l‘.'n ol St e, A%, 0t

rlu-————uvm, »aes Aet de o0 ok ad Aa o Sod 00 abbiiss bia utie Ao hecucasnhin Shcia petri M SASIA I AA A A AR A LERE Sl A RS

&
First, segment out possible targets from an input scene. This can be accomplished
with either a doppler image, if the target happens to be moving [13], and/or with a range
. ¢ segmenter as proposed by Tong [9:Ch 3]. This segmented scene is in a binary form and
is then overlayed on a laser range scene to include the range changes in the possible tar-
gets. This is so the rest of the algorithm only has to work with one region and one target

* at a time. The segmenting and region selection process are the topics discussed in
chapter II.

° Second, the target and template are transformed into a position, scale, and rotation
invariant (PSRI) feature space. A correlation is performed between the two feature
spaces which determines the rotation and scale relationship between the two. If neces-
sary and available, a properly scaled and rotated template can now be chosen from a

* template bank. The creation of the PSRI feature space and how a correlation determines
the scale and rotation relationship are the subjects of chapter III.

. Third, a window around the peak of the target - template PSRI feature space corre-
lation is presented for classification. In this domain, classification is accomplished both
with standard distance measurements and with a trainable neural network. These

. methods of classification are the subjects of chapter IV.

Another method of classification is to take a properly scaled and rotated template
back into the space domain and perform a "normalized” correlation between the target
< and template. The normalized correlation used was discovered during this thesis effort
and will be from this point called a Goodman - Schwartz correlation. This correlation
and its use in classification are the subjects of chapter V.

o Finally, experimental results which compare the use of range imagery to that of
binary data are presented in chapter VI with conclusions and recommendations being
presented in chapter VII.

.

o 1-5

L - o7 ¢ y . ") . COUOHBAOLT AL IR
sl Y : :..,c!:‘,c?a,t"aA_'_v,(.!z*__-f-hfﬁt’,.,l',w"ﬁ,,,ﬂ':.-f!,'@‘!?t.l',;-,(DR OCOORRANANG NGO RS

DA N >0 o 1
q?\'-.!. iR Al e S AL N

IL Segmenting Targets
\ The targets were presented to the classification part of the algorithm in segmented
’ form. Segmentation was also needed to create templates to compare the targets to.
When Kobel and Martin tested the AFIT algorithm using visual images, the templates
were made by creating a silhouette of the target from the actual visual picture. The tem-
plate was cut out by hand and made to be black on a white background. If a smaller or
larger template was desired, the silhouette was moved farther or closer to the digitizing
camera and a new image was formed [1]. This approach was not used to create tem-
plates which include range information since the range data was presented with a
numerical range of 256 and the digitizing camera available only had a range of 16 lev-
els. This loss of information was thought to be unsatisfactory for an algorithm that was
attempting to determine the usefulness of range information. A geometric model-based
approach would be a good way to collect the data in a more realistic environment where
different aspect angles would need to be computed. But this approach was well beyond
the scope of this thesis. Some initial testing was performed using targets that were hand
segmented directly from the laser range data. Hand segmentation simply involves set-
ting all the pixel locations that don’t belong to the target equal to zero. With a 256 x
256 image, this becomes a very tedious process. By the time it became necessary to test
the algorithm using many targets and templates, Dennis Ruck, a fellow AFIT student,
had found a way to produce segmented targets using the doppler information of the laser

radar data [13].

These segmented doppler images were in a binary form with the target pixels hav-
ing a value of one and the background having a value of zero. The segmented doppler
image was then multiplied by the range image to yield a template with range informa-
tion. The "Ruck Doppler Segmenter” became an invaluable tool in this thesis effort.
What follows now is a brief summary of Ruck’s Optimum Thesholding method of seg-

menting doppler data along with his region detection routine which was needed for the

2-1

h{l?n

g

" (AFAL ! AK s R
A ‘.,.,g'!’_v‘.".‘.l’q‘i‘! »‘l?;‘l%,l'.h'ol‘l; g.‘?q‘l’vvﬁf‘,' ,fn?!' q.l.p K

case of multiple targets. For more details refer to Ruck’s thesis [13].

® Ruck uses an optimum thresholding method described by Gonzalez and Wintz
[14:325-331] which assumes that there are two principal brightness regions in an image.
In a doppler image, one region corresponds to the targets (assuming a radial velocity)
® and the other corresponds to the background. Therefore, the histogram of the doppler
image will contain two separate clusters, a target cluster and a background cluster. Ruck

shows that assuming the a priori probabilities of the target and background are equal,

P and assuming that the two clusters are indeed separate, "the optimal threshold becomes :
T= “’";“” @.1)

where J, and Y, are the means of the target and background distributions, respectively "

@ [13].

Now its a simple matter to set each pixel with a value greater than the threshold
equal to one and less than the threshold equal to zero. In the above analysis, there is no
guarantee on which side of threshold the actual target pixels will fall. Ruck overcomes
this obstacle by assuming that there should always be more background pixels than tar-
get pixels. Therefore, if the resulting picture contains more ones than zeros, he reversed

the polarity of the segmented image between zero and one [13].

The segmented image now contains all the moving objects within the input scene
in binary form. Its then necessary to determine which areas in the scene are worth
further processing (ie. classification). Ruck identifies these regions by first scanning the
entire segmented image and creating a list of the borders of all the clusters of pixels. If
this border list was less than a threshold set at 50, the region was deemed too small to
bother with. Each of the remaining lists corresponded to possible targets that needed to
be classified [13]. The border lists were then separately reconstructed into binary
images which could be multiplied by the complete laser range image to produce the

desired laser range targets and templates.

® 2-2

- r o Fe AL N B
A R B

-~ A

I X

AT

Lol I

D)

n

N : >
LRI Y Y o by G UL 4

-~
'

! 5 e’} WY -«
W, l'a "u, T hatdeas,

P o R T Ty

Ruck’s doppler segmenter was used for the vast majority of the experimentation in
this thesis. However, it does have an obvious drawback with non-moving targets. The
segmenter proposed by Tong uses a combination of laser range and infrared data to seg-
ment out the "man-made” objects out of cluttered backgrounds. Through a process of
gradient operations, mask generation, and conditional neighborhood filtering, Tong was
successful in producing segmented binary images of the desired targets [15]. These seg-
mented targets tend to have a certain amount of "blobness" associated with them but the

robustness of the process makes these targets worth an attempt at classification.

A detailed analysis showing the usefulness of classifying with Ruck - segmented
targets versus Tong - segmented targets was not accomplished. Some Tong - segmented
targets were simply thrown into the classification pot and checked to see if problems

resulted. If both types of templates could be classified then each method was deemed

useful.

Once a template and possible target was identified, the next step was to transform
each into the PSRI feature space. This transformation was necessary whether the
classification was to be performed on the correlation peak or with the actual target in the

space domain. The next chapter covers the PSRI feature space.

i l‘g l" .,lig#ccv,-‘x.a Quf(»,r, e

; Y o R T T M "oy DO
'. ‘...“.ﬁ‘! !"‘?'P.!' 24, ,"u‘."‘.'f‘?i”. ‘i" " S .; !QA n‘. ?1,! P

L A Ads Sas vaw

r_’a»_l,!- O
3N

-

ITI. The PSRI Feature Space
3.1 Creation of PSRI Space

Since the segmented target could be presented to the classifier with any position,
scale or rotation characteristics, a space which is invariant to these changes is needed.
Much work has been done with the F(In r,0) position, scale, and rotation invariant
(PSRI) feature space by Casasent {3] and locally by Mayo, Horev, Kobel and Martin
[1,4,16]. In this case, a PSRI feature space is not one who’s features are totally invariant
to position, scale and rotation but rather one who’s features behave in a very predictable

manner with respect to position, scale and rotation.

The position invariance is the only true invariant part of this feature space and is
accomplished by taking the magnitude of the Fourier transform of the input scene. The
position invariance of this transformation is indicated by the Fourier transform "shift"

theorem:

If F{iGxy)} =1(f.fy) then
Flik-ay-B)J =1(fufy)e'” ok Po) 3.
where i(x - &y - B) = input image shifted by « units in the x direction
and by B units in the y direction
F{)} = Two dimensional Fourier transform.
Therefore, shifts in the input scene will only affect the phase portion of the Fourier
transform and will have no affect on the magnitude portion. This is very nice for mak-
ing the space shift invariant, but, it runs a great risk if this space is now used for
classification. By throwing away the phase, we assume that information in the magni-

tude of the Fourier Transform is enough for classification [17].

Rotation ’invariance’ is accomplished by first realizing that rotations within the
input scene result in exact equal rotations in the magnitude Fourier transform plane. If
the magnitude Fourier transform plane is mapped into polar coordinates, rotations in the

input plane will result in linear shifts along the angle axis. The new spatial frequency

3-1

coordinates are given by:

Ne fo= tan“[—f,’—} (3.2)

_ and

~ f=(2+ 2 (3.3)
»

‘ Kobel and Martin used only half of the magnitude Fourier transform for conversion to

the polar coordinates since the magnitude spectrum has even symmetry [1:17-18].

The scale “invariance’ makes use of the following Fourier transform property :

o
. Xy
; This property is simplified by realizing that there are not different shaped targets only
n ¢ the appearance of different sized targets due to how far the target is away. This type of
. scaling will be equal in the x and y direction and therefore a = . Since the angular
k.
axis (fg) was created from the ratio of the y-direction frequencies to that of the x- direc-
| & tion frequencies, it is not affected by uniform scaling.
The radial frequency coordinate of the scaled polar magnitude spectrum is now :
! fr =103 + £ (3.5)
- ® Taking the natural log of both the scaled and the unscaled radial frequency coordinate
o
N results in :
. (g = 5 in(2+13) (3.6)
(
and
! ()= In(@)+ Sin (24D (37
L)
RS or
:
j In(f;)-In(f,)=In(a) (3.8)
" Therefore, if the radial axis is logarithmically scaled, uniform scaling of the input will
¢ result in a linear shift along the In f, axis. Smaller targets will shift in the positive direc-
: tion and larger targets will shift in the negative direction. The properties of the PSRI
g

:Q 3_2
] ("

[

Y

LAV AT A ACOMOUITL PO MO0 B M MM MO Mo CWC M0 MO MO JOM O MO SO MO LIS SOMMON IO MO0 DI OIS) RSV LG LIRS
':.,;'7‘.’553:?5’1'. x:qr ?w.,l,i.‘ﬁ -‘,*v.‘“u‘,' A T T e b ""t,.‘i S RROR SR U R WAL W o8 «‘f'e""‘ »0.“' Gea R

4 0,00

-t

feature space are shown in figures 3.1 - 3.5.

)

2 8 M 4 A & &

a "
-~

Fig 3.1
Original Template

sSaby
)

|
=
»

Lo el

Fig 3.2
Magnitude Fourier Transform of Template
(Note: Magnitude Fourier Transform is Invariant to Shifts)

NS %]

. ¢ 3.3

~I
-l
\‘
’ J.’Ju A kP AT A A T T e T

! . A ’ . - ; \ i ..M.l.. O R)
NIEIEIEANS WWLIILKCRD BF S (Wi AR R T K oo i L0 T] RIOUTN IO K

Palnc hac aas sed ub Siah Sl ubed

Fig33
Shifted, Scaled, and Rotated Version of Template

1nr,

s,

Fig 3.4
PSRI Space of Original Template

!

4 Mo

Maaiad s Ao Slos Bas Bae A ohacndd anh asE acd AR A G Bodh il Sl SN SR SR

9@!0?{?6'5 , Y

' I s ok~ o aka Al afh-ada ok ald aud aiaid aii ek athn A et Aol S il S il Sl el BEARIL Bp

&
L
L J
L
9
Fig 3.5
PSRI Space of Shifted, Scaled, and Rotated Template
(Note: Three operations are independent and cause a
measureable shift in the PSRI space.)
@
®
G
@
Fig 3.6
Correlation of Previous PSRI Spaces
L (Note: Correlation peak indicates amount of shift
and therefore scale and rotation.)
A 35

*’\‘.‘p'\"‘r- LN N -',.

PR UK | !‘ . . ‘,‘,nb_‘-. nd M AALLE) K]
P O s O Y RSOGO RS AT Ll i '

o “'"""u-',‘:"'t"-'a".‘t':"t“.:

I

(.

TYRNIRY . O

A

2Ty,

OO AT LA MDA et Ay by I LOODG
¢ a’l’a.l': W, l.:‘l‘:?l':'l'!'s't‘i':'t‘!‘.\’-.o“' ‘\ OO " W't ’.' K ‘ ".' OO0l "'10 ! “i 9" Wt "

There are a few subtle points about this feature space that need to be pointed out.
First, invariance in rotation translates to linear shifts along the fg axis. This axis is
periodic so shifts off the right end wrap around to the beginning of the left end. Second,
invariance in scale translates to linear shifts along the In f, axis. This axis is not
periodic. The In f, axis can be thought of as extending to infinity in both directions
above and below the region chosen to be analyzed. A linear shift then means to shift
this chosen region. Smaller targets causing a positive shift means that new information
is pushed in from the bottom and information is lost off the top. This can cause prob-
lems in classification for large scale changes depending on how closely related the

classes are to one another.

3.2 Use of PSRI Space

One of the best uses of this PSRI feature space is in determining how much a tem-
plate is scaled and rotated with respect to the target. Rotations are represented by linear
shifts along the fg axis and scale changes are represented by linear shifts along the In f,
axis. Therefore, a correlation between the target and the template PSRI spaces will tell
how much scale and rotation difference there is. The correlaton plane will contain a
peak value at a location representative of how much the template PSRI space had to
shift to match the target PSRI space. If the target and template are the same scale and
rotation, a peak at location (0,0) in the correlation plane will result. The results section
of this thesis contains data which shows that shifts along the fg axis occur at a rate of
2.8 pixels/degree rotation and along the In f, axis at a rate of 30 pixels for a scale
change of 2:1 (See Fig 3.6). Once the scale and rotation changes are known, a properly
scaled and rotated template could be chosen from a template bank for further process-
ing. The results section also shows how critical a properly scaled and rotated template
is for classifying and locating a target. As stated in chapter I, one proposed method of
classification was (o analyze the peak of a template - target PSRI feature space correla-

tion. The theory of the PSRI feature space leads to a hope that differently scaled and

3-6

00

M' 'l

h Al s '.‘ h‘

AN NN ' g

4. \
1"‘5"‘.

rotated objects should correlate, in the PSRI feature space, to very similar peaks. Again,
this is due to the fact that, in theory, the only change in the PSRI spaces has been linear
shifts. If a method of grouping similar things together and then measuring the level of

"togetherness" could be found, classification would result. Classification is the subject of

the next chapter.

37

mmwwu bbb Al Ad Al A b, |

2
N
v ; ¢
:' IV. Classification .
-_r 4.1 Introduction
n ¢ The theory of the PSRI feature space states that targets that are scaled and rotated
- with respect to one another should be virtually identical (except for linear shifts) in the
PSRI space. Therefore, if the PSRI space of a template is correlated with a PSRI space
l. i of a scaled and rotated target, the "shape" of the correlation should be similar to the
;' shape of an autocorrelation of the template PSRI. If a way to determine and measure
.’ these similarities could be found, then classification could be accomplished. This was
¢ the logic that was followed in the pursuit of classification.
The correlation used for all the PSRI feature spaces was the linear modified phase
‘ correlation as discussed in Kobel and Martin [1:37-39]. In this correlation, the magni-
_., " tude of the templates Fourier transform is set to one during the correlation and has the
effect of edge enhancing the PSRI space of the template. This effect can be thought of
as a very specialized high-pass filter being applied to the magnitude transform. All
', ¢ Fourier transforms of real objects have large low frequency magnitudes relative to the
Z’ high frequency magnitudes and the high frequency magnitudes always approach zero as
_‘, the frequencies become very large. Therefore, setting all the magnitudes equ.l to one
e has the effect of attenuating the low frequencies relative to the high frequencies, thus a
E high-pass filter. Now, since the PSRI space of the template is edge enhanced, the corre-
* laton plane will contain a peak where the shape of the template PSRI space best
i, ‘ matches the shape of the target PSRI space. This last statement is not generalized to all
: modified phase correlations but works in this case since the PSRI space is based on a
S magnitude Fourier transforn. The energy in the PSRI space peaks and falls off nicely
:(. from these peaks without spurious high energy pockets. Without a normalization
j scheme, this correlation could not be expected to produce as good results with a clut-
: tered space domain correlation. After the complete correlation wii« performed, the peak
. j“ was found with a simple maximum value search routine and the location of the peak
-
" 4-1
<

mmmmww- @ ata st aed g e b i AAC R el andl Ak gl A Sl Sl A

e
very accurately defined the scale and rotation of the target with respect to the template.
The peak in the correlation plane was chosen as the starting point for feature extraction.
® Tallman showed that the lower three harmonics of the Fourier transform are
enough to adequately discriminate handwritten letters of the alphabet [18). These lower
three harmonics, along with the DC component, result in a 7 by 7 array of numbers.
6 Even though it's an enormous jump between defining an object in the low frequency
Fourier transform space to defining an object based on some peak in the correlation
plane of the PSRI spaces, this 7x7 array around the peak was the initial features for
® attempted recognition. Examples of these peaks are shown in figures 4.1 and 4.2.
¢
o
€
.
Fig 4.1 Example of an Autocorrelation Peak
(Note: This smooth fall off is present in
all the autocorrelation peaks.)
°
It scems appropriate at this point to momentarily digress to some general thoughts
on target recognition. No ideal, all purpose features have ever been found that can
always classify any target It is reasonable to assume that such features may never be
¢
found and very well may not exist. However, many types of features have been found
. 42

Ly

- *4
T3 I " g 4 0 'e A pgb X
Pt s ol -o ' AW J "0) .!"lo ! ‘a'.'n'.’ RN 'a.c' - l.. et .0'0‘0‘0.0 t"“" .0" 0'0.0".0“0 " G " “A‘ e A‘. ARES

b

TR

1

:

)
@
¢

W

l

\

N

e

B4

l‘

']

“I 123,

N
A8
K-
1%

&Y
™ -

L Fig 4.2 Example of a Crosscorrelation Peak

_“ (Note: All crosscorrelation peaks lack the smooth fall off.)

D>

% ° and used sucessfully for recognition given a set of resuictions on such things as size,
N rotation, aspect angle, noise and illumination. Even human beings, which possess a
\'

l‘: remarkable recognition system, have restrictions such as distance and illumination.

\i

~ : -

® There is an almost endless supply of features that can be extracted from an object.

4 The only limitations seem to be the limitation of the imagination. However, by
.')) .

;' definition, good features are ones that result in recognition and better features are ones
1}

B & that result in a smaller set of restrictions. With any given set of features there is really
g
- no way of knowing if they are a good set without testing them. Even a good set of
Sa) - . .
v features might be rejected because the proper form of testing can’t be found. There is
e < much trial and error involved in the art/science of pattern recognition and any pursuit of
K recognition is destined to result in many more failures than successes. Therefore, the
S

\ »

: reason for choosing a 7x7 window around the correlation peak of the PSRI feature
L)

8

I3 spaces for classification was based on a mixture of scientific reasoning, from the theory
P of the PSRI feature space, and the fact that it "felt” like it should work, since Tallman
"’ \
g '

R R

14 4.3

PR KON R o NP EREE T Gl et oty by P ety B et el e R e X .
‘.‘ L‘,"‘ “i t' “.’.‘):G".A“.va'f’.‘..o".""ﬁ '?:"!:"“ib'\':ﬁ":“‘.\}"s“?ﬁ.’"f"l ’:t"’-".o""".."'.v"‘.-“‘- hfa“’,"‘.l'“4".t"‘c"h"sa“ﬂ"‘:’"«"‘)‘.1“‘35.,-'-"!" »F"a"'m“l!ﬁ D) '\‘ !ﬁ.‘ A% AT,

i
;': did similar work with letters.
S 4.2 Correlation Peak Analysis
PLA
;‘ ° The testing method was to compare the window with an autocorrelation window.
‘ The autocorrelation window was a 7x7 window around the peak of the autocorrelation
‘»- : of a template PSRI feature space. The comparison was done by first normalizing each
.‘ window by dividing each point by the square root of the sum of the squares of all the
-: points in the window. The 7x7 array of numbers can now be thought of as a 49 dimen-
": sional vector with a length of 1. Each vector, from every correlation, now specifies a
. i point on the surface of a 49 dimensional hypersphere. If the point representing the auto-
E correlation represents an exact match between the template and the target, then even
E though the target may be rotated and scaled differently, the correlation peak should look
i similar to an autocorrelation and be located very close to the true autocorrelation peak
j on the 49 space hypersphere. Of coarse, "very close" is an extremely relative term. The
‘ 49 L
j., v distance between the two, if measured as D = (‘E(xl,' —x4)%) 2 , need only be closer
::; than any cross correlations in order to be separable.
.t For example, if a target, T, has the possibility of being one of 3 classes A, B, or C,
* L4 then three PSRI feature space correlations are performed, (T*A, T*B, T*C). The dis-
3 tances in 49 space between each of the correlation peaks and the corresponding auto-
.‘ correlation peaks are calculated, (T*A - A*A, T*B - B*B, T*C - C*C). The smallest
l € distance will then correspond to the correct match. In this thesis experiment, there are
& only 2 classes, autocorrelations or crosscorrelations. Without placing too many restric-
tions on the algorithm, it was hoped that the autocorrelation peaks would cluster
" . together and that the crosscorrelations could be located anywhere outside this cluster.
A

Therefore, it was only necessary to measure the distance between the correlation and a
single reference autocorrelation. A threshold value could then be set to determine if the

L correlation was within the autocorrelation region. This assumes that the correlation

il

i M A I B | f) e q7h ¥
B S R A A TSI B SO N

points on the 49 space hypersphere are clustered into neatly packed regions and that any

wrongly matched correlation will be located farther away from the true autocorrelation
than all desired properly matched correlations. However, its not guaranteed that the

clustering will be so neat.

It is possible for regions to be clustered into arbitrary shapes where distances
within a region are not smaller than region to region distances, sirips for example. In
this case, it’s necessary to either find another testing method besides distances or per-
form some type of processing on the features which will spread the regions farther apart.

Another testing method is found in the newly rediscovered field of neural networks.

Appendix A explains more about neural nets, but the general theory of the mul-
tilayer perceptron neural net is that given a set of data to train with, the net will formu-
late the boundaries around the regions. Once the training is accomplished, test data is
supplied and the net will indicate which region it falls in. The region identification
results in classification. Identification is via a numeric value of the output of the network
where a value of greater than an upper threshold indicates a true and a value less than a
lower threshold indicates a false. The upper threshold is usually taken to be 0.9 and the
lower threshold taken to be 0.1. This separation between a true and a false value results
in a very good figure of merit criteria. The figure of merit gives that warm fuzzy about
how much the classification decision can be trusted [19]. Both distance measurements

and neural nets were used as tests with results shown in chapter VI

Another method of classification worked with in this thesis was performing a nor-
malized correlation within the space domain. This method requires determining the
proper scale and rotation for the template and then correlating the template with the seg-
mented target in the space domain. The classification can now be accomplished on the
magnitude of the correlation peak. As shown in chapter V, the correlation peak will be
maximum when an exact point for point numerical match occurs between the target and

template. Since the range information is periodic, the absolute numeric values of the

4-5

target can’t be predicted. Two preprocessing methods were used in an attempt to make

the target and the template have the same absolute values. Method 1 involves taking the
gradient of both the target and the template before correlating. The gradient operation
ignores the absolute values and assigns new values based on the numerical change
between points. This has a nice "flavor” to it as it emphasizes the fact that the changes
in the range data are unique for a given target. The second method is to simply add a
value to each point in the template that makes the target and the template have the same
average value. This is accomplished by finding the average of the points in the target
and in the template and then adding the difference of the averages to each point in the
template. Both methods were tried and the results are shown in chapter VI. The details

of this space domain correlation are discussed in the next chapter.

4-6

; V. Correlation
5.1 Introduction

Most pattern recognition algorithms use some form of correlation as the method of
finally locating the target. Basic correlation involves shifting the template to all possi-
ble locations within the input scene and summing the product of all corresponding
points. A basic correlation works very well for a scene in which the target energy is

much greater than the background noise, where all possible targets have equal energy,

T

and where the shape, size, and orientation of the target is very accurately known. Since
very few of these type scenes exist, the basic unmodified correlation is very rarely used
[19].
: ¢ The main problem with using an unmodified correlation on most real scenes is that
| many times there is more energy in the noisy background than in the target. Therefore,
the correlation peak due to the target will be much lower than the correlation peaks
B associated with the background. Hence, it has only limited applicability. Ideally, it’s
desired to have the largest peak in the correlation plane identify the location of the tar-
get. Kobel and Martin partially overcame this problem when correlating feature spaces
‘ by using a modified phase correlation [1:38].
' Basically, the modified phase correlation involved correlating the template with an
edge enhanced version of the input scene. This correlation was used for all the correla-
tions of the PSRI feature spaces, and it works well when looking for a pattern in a scene
that doesn’t contain a great deal of rapidly changing noise. Two problems make this
unsuitable for correlation with range data. First, most laser range data contains a great
> deal of rapidly changing noise in such things as trees and bushes. Second, since the
i range data is periodic from 0 to 256, the jump from 256 back to 0 will contain a large

; amount of energy when edge enhanced.

© Another type of correlation suggested by Kobel and Martin was to first rectify the

' image by making the magnitude of it’s Fourier transform equal to the magnitude of the

(. 5-1

»

[

P oy N O A A DA O PO e M Wt
Mt AR adad i DB NRKRAARNR R AN XA Y,

templates Fourier transform. This process enhances the frequencies associated with the
template and attenuates the noise. A problem found with this type of correlation is that
the frequency associated with the range gates (the spacing between the range jumps) can
be very close to the dominant frequencies of the template. Therefore, when the frequen-
cies of the template are enhanced, a large amount of energy is put into these gates. This
results in correlation peaks at the areas of "correctly” spaced range gates and not at the
target. These problems are not intended to state that these correlation methods will
never work on range data, just to show some of the problems that need to be overcome.
For someone more adept at computer programing and graphics, it may be a relatively
. simple task to rid the input scene of the range jumps. Also, for the newer AM/FM laser
radars, where the absolute range will be available, the problem will not exist.

5.2 Goodman - Schwarz Correlation

When using a correlation for direct target classification of a segmented target as
proposed in chapter IV, it becomes necessary to have an expectation of the correlation
{ peak. A correlation method that was found to produce very desirable results is what will

be referred to as a Goodman - Schwarz correlation. Although a reference for the use of
" this correlation was not found, the method is a simple extension of a character - recogni-
| tion system discussed by Goodman [20:179-181] and is sure to have been used before.
The Goodman - Schwarz correlation is accomplished entirely in the space domain using
as a starting point the brute forc; definition of correlation. The equation for a space
domain, discrete, brute force correlation is as follows:

X N-1M-1

Roy(@0B) = 2 3, X xum)y (reoom+B) 5.1)

-

This equation says that every point in the correlation plane is a result of the sum of a

point by point multiplication of the image with a shifted template where the shift

W

< corresponds to the location of the point in the correlation plane. Again this basic corre-

lation does very little for locating or classifying except for very simplified, highly

5-2

B "!""i"A_",’»/.'l'l',~“\ Y :_'_'.|.‘. O ‘|' 0,05, 078 %) 0% 0%, g% A%, Al
L) " 0 i, "* 0.9 LN AT .“of‘?;'fl I, RN T e N S N e

CACBOMGAOMIIMNANARS AT NI
,i"x"x A v",-","‘.i":‘ﬁo"u"

l restrictive cases.

: The main modification to this correlation is the energy normalization of the input
data. Most energy normalization schemes, including the character - recognition system
discussed by Goodman, are involved with image and templates of the same array dimen-
' sions and/or with the restriction of one object in the input scene, usually with relatively
minor amounts of noise. With a smaller template array and an image filled with a large
amount of noise and several possible targets, it becomes necessary to do a more local-
ized normalization. The character - recognition system in Goodman takes an input
image (a character) and compares it, basically using a correlation, with a series of tem-
plates. The correlation is then normalized by the division of the square root of the sum
of the squares of all the points in the template (the energy of the template). Goodman
shows a proof using the Schwarz inequality which states that the peak magnitude
squared of this correlation is an absolute maximum when the template and the image r
numerically match. Numerically is stressed to emphasize that its the numbers that are
needed to match and not just the shapes. Also, when the template and the image exactly
match, the magnitude squared of the correlation peak will be equal to the sum of the
X squares of the template (the square of the energy). This fact gives us the expected value

needed for classification.

It’s a simple modification of the character - recognition system to reverse the
image and template roles. Now there is one template, several inputs, and normalization
is by the input energy. The shifting method in the Goodman-Schwarz correlation is the
{ same as the brute force correlation except at each shift in the correlation, the part of the
image corresponding to the location of the shifted template is considered to be the input
to the modified character - recognition system. The output of the modified character -
recognition system becomes the value of that shift point in the Goodman-Schwarz corre-
latdon plane. A simple peak search of the correlation plane will identify the location

where the image best matched the template. If the peak value is equal to the square of

N e e

5-3
G

L L S e i 26 30 R LSO L0 S O SO OO B A ot ot AN D BN O RSB ST IR
¥ S A SRl .,”‘ IR x.ﬁ’!_f’: X ‘.'t"'i., IO MU R NS OO KM OB x‘-,_‘a,i-?;ft A B R O R A M L

m—vw- Linh S et e A Sav i’ Jiirut=shi ahd 2 ard SRR AA A Al
~
.

the energy, that location contains an exact match of the template. Also, its possible to

- determine a threshold, related to the theoretical peak value, that will result in acceptable

®

classification.
: This method would have a hard ime with a small binary square template attempt-
- . ing to locate another small binary square in a scene that also contains large binary
_: squares. Since the normalization only uses the energy of the image that corresponds to
j ’ the location of the shifted template, all the locations in the correlation plane representing
; : ® the large squares will also contain the proper maximum peak value which would indi-
¥ cate an exact match. However, with the use of the range data, the process was found to
’ work very well for locating and classifying a target when the template was taken
‘, j - directly from the input scene (ie. same scale, rotation, aspect angle and relative range
. values). Also, as stated in chapter IV, the gradient operation or an average equalization
: can be used to allow for differences in the absolute value of the range information. In
- . this manner, the locating and classifying was accomplished in a single step. In addition,
‘ K this method has the possibility of working with partially occluded targets. The template
could be broken into a number of sectors with each sector now being run through the
correlation process as a separate template. The final classification would be based on
& ° the number of adjoining sectors that reached threshold, five out of nine for example. A
closer examination of this process also shows that a completely parallel architecture is

< possible. Experimental results of all the classification methods are presented in the next
; -

? chapter.
r

%

v

- c

¢

:

.::'

e ¢ 5-4

A -
x‘l"

L

’

A I PO rs, e ' O OO BTN 0 1 SOOCCD00C . 00
Dl s e o A) e, VNG AR T Tty T I DGR AT Vs el

VL Experimental Results

:: . 6.1 Introduction
- This section will show and discuss the results of the various experiments conducted
during this thesis effort. First will be the verification of the use of a PSRI space correla-
K. - tion to identify the scale and rotation of a target with respect to a given template using
" laser range data. This is a "get your feet wet" experiment since it uses the parts of Kobel
: and Martin’s Executive program that will be needed for the remaining experiments.
oy ° Kobel and Martin already demonstrated that this process works well with visual data
& [1:66-67] and it was necessary to insure that range data would also work. Next will be
E the classification experiment. This portion consists of three separate experiments with
: - cach portion comparing the use of range data to that of binary data for classification.
. The three experiments include a standard distance measurement and a neural network
j with data obtained from a PSRI space correlation, and a space domain Goodman -
. - Schwarz correlation with actual space domain input data.
by 6.2 Identification of Scale and Rotation
'» This experiment was set up to verify the use of a PSRI space correlation to identify
o ® how much a target is rotated and scaled with respect to a template. The setup was to
b take a template and rotate it from O to 45 degrees in increments of 5 degrees and at each
rotation, perform the PSRI space correlation with the original template. A peak search
' v was then performed on the correlation plane with the peak location and value being
E recorded for analysis. The process was then repeated for a template that had first been
: scaled by 1/2 and then again with a 1/4 original sized template. This experiment also
\ : ¢ demonstrated which type of correlation would work best and yield the clearest correla-
: tion peaks. The Executive program contains several parameters that can be changed
interactively. The modified phase or “Lin! correlation flag" option was determined to
.'e c yield the best results.

The Executive program contains a peak search routine which looks for maximum

MRS M PO ; T PO MO D
AT Ty 6‘:":.5. Qii'ﬁ'."‘!;.'.‘.. [A)

L AR &

1y
A
g vertical strips that are 35 pixels wide and then looks for the maximum value within this
N maximum strip [1:104- 105]. This process might be necessary when analyzing complete
) ' ® input scenes, but with using a segmented target and segmented template, a more
'\ simplified maximum value search routine gave identical results and required much less
‘; processing time. Also, because of the 35 pixel window that the Executive peak search
‘ ° routine uses, and the fact that small rotations cause only small shifts, a rotation of less
, than 6 degrees will cause the program to abort. A simple modification of the program
' that would include a wrap around of the data for small shifts would cure this problem.
- * The Executive program for rotating an image was very useful in creating the
:‘ rotated templates. A good method of arbitrarily scaling a template containing range
~. data was not found. A more detailed study is needed on how detectors collect the data
_ * and therefore, how a smaller or larger target physically changes the values of each indi-
: vidual detector. There should be a good mathematical approach that would come out of
_ such a study. For this experiment, scaling by 1/2 and 1/4 was accomplished by simply
_, v sampling every other pixel for 1/2 scaling and then every other pixel again for 1/4 scal-
:“ ing. Tables 6.1, 6.2, and 6.3 show the results of this experiment.
-.: ° This data shows that the location of the peak in the PSRI space correlation plane is

a very good way to determine the scale and rotation of a target with respect to a given
template. The data also indicates that rotations and scale differences can be calculated
using approximate conversions of 2.8 pixels per degree rotation and 30 pixels per 2:1
scale change. Also, a true autocorrelation will yield a peak at the 0,0 location which is
the lower left comer of the correlation plane. A smaller target causes the peak to shift
up and rotations in the counterclockwise direction cause the peak to shift to the right.

6.3 Classification

The classification experiment was a set of several experiments. This section
"5 discusses the setup for each experiment, presents the results, and analyzes some of the

results.

&
l‘. U

oo MR N A O e A e (TR s = AT (3
R L AR A O A D MR RN OO AN 0, SRR X L T A SRS A S ‘-‘.'".c's?:'cf.'o,5:'.#-'-’0,'"'.0'0{

q

- DALY SELLFrSEs T LAAN

-~ g
PPV AV RS
¢

-
Pd

e, N h Yy

h 3

2280 P

~

,.
JoatJy

By
1

Py

C . R 3 am, vy -
T2 s Frrre M IS SSS %
-~
3 s

Wa

6.3.1 Experimental Setup

This experiment was broken into three main sections. There was classification
using distance measurements, classification using a neural network, and cla,sification
using the space domain Goodman - Schwarz correlation. The classification experiments
that use distance measurements and the neural network use data obtained from a 7x7
array around the peak of a PSRI space correlation. Both experiments were conducted on
six sets of input data with three sets created from laser range templates and three sets
created from binary templates. The three sets of files are shown in tables 6.4, 6.5, and
6.6. Each name specifies a file that contains the data of the PSRI correlation peak. The
first part of the name specifies the target. The middle section indicates the rotation, if
any, of the target and whether the data is range data (tmp) or binary data (btmp). The
last section of the name specifies the template used. For example,
R3083_r10_tmp_3195.dat indicates that this is the range data correlation peak file
created using for a target, R3083 (a side view of a tank) that had been rotated by 10
degrees (r10) and for a template r3195 (a side view of a tanker truck). Set one was
setup to demonstrate the classification between true autocorrelations and crosscorrela-
tions. The true autocorrelations were of identical targets and templates. This set was
used to demonstrate a "best case” scenario, and determine if there was any point in trav-
eling farther down the chosen road. If the experiments could not classify this data, there
could be no hope of classifying in a more robust situation. Set two was setup to demon-
strate the classification between rotation autocorrelations and crosscorrelations. Auto-
correlations were to include a number of rotated versions of the target with a fixed tem-
plate. Set three was setup to test the complete robustness of the classification process.
The theory was that with respect to the correlation peak, a truck is a truck i . truck and
a tank is a tank is a tank. Therefore, same type objects that are at similar, "' not neces-
sarily equal, aspect angles, rotations, and scales should be able to be separ.iicd from one

another. Finally, as stated above, a comparison was made between the u- of range data

6-3

W HR " S e o O A TR 7 e Mt Y0 O R] "
.".“"v,ﬂaul.-‘.ﬁ"o TRy, LN ot b " I’-"!‘u)i.- I’-‘l N M _. b 3 M "‘lo.':\ A Jﬁ'«‘l AR e ’Lt’-!l .4 a.A'-‘ll"‘.t".-‘\'“:‘!’o, ‘!‘C‘!‘l v l"‘l‘!”h”‘:'

LA}

and the use of binary input data for classification.

The underlying goal of this thesis was to determine if range data contained an
added level of information that could be useful in classification. Therefore, the exact
same classification experiments were to be conducted on the laser range templates and
the binary templates. However, a fundamental error was made on the first pass through
this experiment. The Executive program that creates the PSRI space of the targets and
templates contains a variable that allows the user to set the range of frequencies that get
mapped into the PSRI space. Laser range data changes value from point to point which
requires high frequency components. Also, lower frequency components are useful in
determining the overall shape of an object, such as width versus height. Therefore, the
decision was made to map the whole range of frequencies from 1 to 128 into the PSRI
space. When the binary templates were first transformed, the range of mapned frequen-
cies were left at the default values built into Executive, 5 to 70. With the resulting set of
experimental data, no meaningful conclusions could be drawn between using laser range
input and using binary input since it could not be determined whether the differences
were due to the actual change in input data or the change in frequency mapping. The

templates were therefore retransformed using the same 1 to 128 frequency mapping.

The final experiment in classification uses the space domain Goodman - Schwarz
correlation. This experiment was performed on a much smaller set of data since the
correlation by itself offers no real hope of being robust in rotation or scale. It must be
assumed that the aspect angle of the target is known and can be matched. It is also
assumed that the PSRI space correlation identified the rotation and scale and that a prop-
erly rotated and scaled template is available. The space domain correlation was per-
formed on a complete unsegmented laser range scene to demonstrate the robustness with
respect to clutter. Therefore, a comparison between the use of range data and binary
data was not made. Also, tests were made using the Goodman - Schwarz correlation to

locate partially occluded targets.

P ¢ oS

A I A A ol ARG e R OO I 00O
~.c “ﬁ- !) ‘:”-.A' ey f:’ ¥ L W D L e "‘, OO i ‘.!.v’*‘. ABAAA N .u’i;r"u,q'm',a,rg':.s‘#, AL,

AU .
.o.l':',l"!..og ‘a,i'), Yy

6.3.2 Distance Measurements

The distance measurement used in this experiment was a standard euclidean dis-

tance on the normalized input data. This euclidean distance was measured as
49 L
D =(X(X1;~X2)%)? where the individual points are already normalized by the square
i=l
root of the sum of the squares of the input. The next question was what to use as a refer-
ence point to measure the distances from. The work with neural networks had given a
good feel for the usefulness in training a classifier. For a distance measurement, the
training involved reading in a number of autocorrelation examples and determining an
average location for these points. This average point was then used as a reference for
which all the distances in the set were measured. There was no a priori knowledge
about the distance values and the hope was that there would be a distinct difference
between the distances of the autocorrelation peaks and that of the crosscorrelation
peaks. A histogram plot of the distance measurements obtained from the training data

was used to determine a threshold value for classifying the test data. Tables 6.11 - 6.24

show the results of this experiment.

These results indicate that the normalized PSRI space correlation peaks of true
autocorrelations (set 1) cluster very well together. Distance measurements allow for set-
ting a threshold that can classify data with an accuracy rate near 100%, only one miss
from either the range or the binary data. The results of set 2 indicates that rotations of
the target with respect to the template produce little movement of the points on the 49
space hypersphere. With rotations between 0 and 40 degrees, classification of near
100% was achieved. However, when the "a tank is a tank is a tank" approach was tested
(set 3), the grouping clusters are dispersed into regions that make a distance measure-
ment virtually useless. The numbers will indicate . classification accuracy of about
65%, depending on the threshold chosen, but this is only slightly better than strictly

guessing. Also, since the data is distributed very close around the threshold value,

6-5

AAOHOE ~ SriR

3

o3

¢

£ a w a5 a,]

PR

» ROy

W ol v

o« o oy, W, ~I'f-("f’-' J’lf'fh’-.-:‘f"v"{$-"_‘f *.h"
« 38 u'; '., . !t’!l . ,.l'.p.!.c‘.,, __".‘ ’.,{

assigning any type of figure-of-merit criteria would yield even worse results.

A comparison of the binary data results to that of the range results gives no indica-
tion that one type of data is better than the other for this type of classification. This does
not imply that the range data does not contain useful information, it simply means that
the testing method of distance measurements between PSRI space correlation peaks
does not make use of the information that is available.

6.3.3 Neural Networks

The neural network used in this experiment was the multilayer perceptron dis-
cussed in appendix A. As discussed in appendix A, a multilayer perceptron creates
decision regions from a set of training files and then classifies test data from these deci-
sion regions. The experiment using distance measurements showed that the autocorrela-
tions in sets one and two were "reasonably” clustered together and distinctly separable
from the cross correlations. These sets, therefore, provided a good testing ground to
determine if the net was operating properly. For all the tests, the number of nodes for
each hidden layer in the network were chosen as suggested in appendix A. All initial
values for the weights and thresholds were chosen from a uniform random distribution
centered at O with a radius of 0.5. All tests were run with an eta gain term equal to 0.25
and an alpha momentum term equal to 0.70. The results of the neural network

classification are shown in Tables 6.11 - 6.24.

The results for set 1 data were obtained with a total of 1000 training file iterations.
The range data was able to be trained with 50 first hidden layer nodes and 2 second hid-
den layer nodes while the binary data required 100 first hidden layer nodes and 2 second
hidden layer nodes. Both the binary and range data results showed near perfect
classification, depending on the threshold chosen. The immediate advantage seen of a
neural network to that of a distance measurement for classification is in the figure-of-
merit. A properly trained neural network tends to make strong decisions one way or the

other.

6-6

< " PV L)
Wt i N EEREHE .‘!m‘!‘d. N :“;P?tq"_*ﬁ*!‘t&. AR

ﬁqll‘q,

3 3 Sf b
F!\.‘, “!_V:‘ By

[daauaua i aia e i o e e i e e n e ana e A bd sata e s atha A a i il bt A A e A g At 4 i Ind ok e el And Sl Sl 2ol Ak ded ol del Sek Salduk Seddall i
Y M

<

The results for set 2 data were obtained with a total of 2000 training file iterations.
Both types of data were able to be trained with 150 first hidden layer nodes and 4 second

hidden layer nodes. Again, classification accuracy of approximately 95% resulted.

The results for set 3 data were obtained with a total of 45,000 training file itera-
tons. The results changed very little after about 25,000 training file iterations but the
net was allowed to run in the attempt of completely classifying the training data. This
goal was not reached. With both the range data and the binary data, the network was
h trained with 200 first hidden layer nodes and 5 second hidden layer nodes. Note that the
same two files in both the range data and the binary data case were unable to be trained.
This may be an indication that with the chosen features and the method of classification,
much of the dominating information is the same between range and binary data. The
overall classification accuracy rate with either type of data was at 85% but when only
the test data was considered, this rate drops to just below 80%. These results are very
promising in that they are much better than the standard distance measurements and
with a far greater figure of merit able to be assigned. The classification rate of just the
same class, different image, test correlations were poor. However, with the very good
classification obtained in the training data, it seems reasonable to assume that better
results would be obtained with a larger data base to train with. One of the training files
i that was not able to be trained was a Tong segmented tanker truck that was about half
the size of the Ruck segmented template. There are, of coarse, going to be limitations
on the amount of variance in rotation and size. More study needs to be done to deter-

mine exactly what these limitations are. Also, it may be important to keep as much

similarity as possible between the template and target so Tong data may work better
when correlated with other Tong data.

6.3.4 Space Domain Correlation

The final experiment conducted in this thesis was an attempt at locating and classi-

fying a target using the Goodman-Schwarz space domain correlation as discussed in

. 6-7

A 28N mL TR AT N AT SN) LA O OO OO RS ENEAGOBOG0AC
A e -‘,l_ Aty 3NN ST .‘!'ﬁ.‘n"«‘a".‘t'.,‘n‘.:‘c.u’lﬁ"~"‘i‘..':..o"!:'do‘i.- t‘."‘t"’ﬂ".“‘e' DDA J".‘“-“'-"'#"‘:* RURPULI

p

S B0 1 Ay Mg Mg 879 Wy

- - =

T;

n

t .'0‘.

‘l‘.‘s"‘ v

chapter V. This was a relatively simple experiment that was set up to demonstrate the
theory and determine the usefulness in a cluttered environment. First, a range image was
created that contained multiple targets. The targets within the image had to be ones for
which good templates were available. Such an image was not available so templates
were overlaid onto a range image. The final range image contained 3 targets, 3033 (a
side tank), 3028 (a front tank), and 3190_p16S (a side tanker). The range image is
shown in fig 6.1. A value of 25 was then added to each pixel in each of the templates so
as to insure different absolute values. Some care had to be taken to insure that neither
the targets or templates contained range jumps. Range jumps cause large values when

the gradient operation is performed and therefore cause havoc in the correlation.

Fig 6.1
Range Image for Goodman - Schwarz Correlation Test

The first addition to the previously described Goodman - Schwarz correlation was
to break the template into 9 sections and correlate with each section, one at a time. The
original reason for doing this was to save on computation time. A subsequent section

would only be applied if the result of the previous sections was above a threshold set for

6-8

(i AN

' 8O0 000 ¥
..4'“ :,* .,‘ X l ,‘l [k ,‘ ,‘A.,i W ‘.‘.5". 4 .'. g‘.'ﬂ' Wl .0' ,0 .'.‘ A .""!,?.0 o ﬂ ai’ J .l .! |‘ .!,\.'.“0,..0,‘.%. ";"h“' "Q“’o,“h}h‘:

LI

PP R i

i

[S

ity

- - -

B Yl of

2

-
o

LantrocaF1yanas

-

i

2T At et

[

.

-~
'

[&

[

BT

4

AR

those sections. The idea for using this multiple stage template matching system was
taken from Vanderburg and Rosenfeld (21]. The order in which the template subsec-

tions were chosen is shown in figure 6.2.

8 1 9

4 2 5

6 3 7
Fig 6.2

Order of Template Subsections

The second addition was to first smooth the data of both the image and the tem-
plate. The thought was that in a real situation, there would be an unpredictable amount
of noise in the image that would cause the target to differ from the template. It was
thought that in a real scene, no single pixel should be outside the range of adjoining pix-
els except for some sharp edges. If these edges get slightly rounded in the process of
attenuating a good deal of spurious noise, its still worth the effort. In this experiment,
the template contained the same noise as the target so the true usefulness of this process

could not be tested.

The third addition was that after the gradient operation was complete, a two pixel
border around the template was eliminated. The reason for this was that since the back-

ground of the scene was unknown, there was no hope of matching the borders of a

’

6-9

R O D) » $) l.’.‘.‘-"
R A R R R K A AR A RO RO

»

]

i

-’.'

el
4

P

('S

gradient template. So, the correlation was performed with the interior of the gradient

template.

Each template properly located the proper target using the gradient operation
method. However, the peak values only achieved about 20% of the possible maximum
threshold. This corresponds to entering 0.8 for the sum threshold response in the Good-
man - Schwarz program. Without further study, it would be hard to assign a threshold
for the purpose of classification. Using the average equalization method, the two large
targets were located using a threshold criteria of 98% (0.02 in the Goodman - Schwarz
program). However, the smaller target could not be located. This could be a limitation
on the projected area of a target (ie. number of pixels with which to classify with). The
multistage correlation allowed for much faster processing time, reducing the total

number of calculations by over 80%.

Fig 6.3
Range Image for Testing with Partially Occluded Targets

Finally, a test was performed to determine if this multistage Goodman - Schwarz

correlation could be used to locate partially occluded targets. The partially occluded

6-10

ey 3y Xh ¥ AN
b ..‘...(‘;".J?'-‘-‘? '»".’A“ 3«,‘3»

. .Y"J"_‘"T'I'F‘T

targets were created by strategically placing blocks into the previous range picture. The

: resulting picture is shown in fig 6.3. The theory was to set the sum threshold equal to

° one so that all sectors would be used at every shift location. A separate threshold was

j then set for the sectors. This threshold would determine if a particular sector was to be
: o counted as a match. A counter was maintained to track how many sectors at each loca-
p* tion reached above the threshold. After the complete correlation was run, the shift loca-
tions with the top number of sectors would specify the location of the target.

*. ° Since previous problems were encountered using the gradient method, only the
s average equalization method was used in this test. The two large targets were located
using this method but the small target was unable to be found. For the target in the
‘ - lower left corner, only three shift locations in the scene had six sectors reach above a
i threshold of 98% (0.02 sub tolerance) and all three were located around the center of the
' target. For the target in the middle of the image, two shift locations had five sectors
) reach above 99%, both around the center of the target. The partially occluded tanker
o v truck in the upper right comner could not be located at any threshold. This was expected
: since the total target couldn’t be found. This target is relatively small and with the
‘ chosen block, has aoout 35% of its sector type information destroyed. At a threshold of
v ° 99% there were over 1000 shift locations that had six sector matches, none of those
y were on the target. Since the target is relatively flat, the small sectors allowed many
,_ , locations within the image to be matched to the target.

‘ This research effort contains some very interesting and promising results, however,
.': there are still many areas that need to be further explored. Conclusions reached and
l. C recommendations for further research are discussed in the next chapter.

@

"
0.
4

A 6-11

DEHIGEOER OO

a8 s
[2]
o
L
!
L
K
s

Table 6.1
Correlation Peak Location and Values for

e g

- Template and Same Scale Rotated Targets
b PN (Note: Rotation shifts 2.8 pixels / degree rotation.)
I~ File Name Peak Location Peak Value
- R3083_tmp_3083.dat 0.0 145780
- R3083_r5_tmp_3083.dat 15,0 113786
- R3083_r10_tmp_3083.dat 280 114947
b R3083_r15_tmp_3083.dat 420 114827
. hd R3083_r20_tmp_3083.dat 56,0 113458
R3083_r25_tmp_3083.dat 70,0 114292
- R3083_r30_tmp_3083.dat 84,0 115316
o R3083_r35_tmp_3083.dat 99,0 114628
-~ R3083_r40_tmp_3083.dat 112,0 114944
o R3083 r45_tmp_3083.dat 124,0 113736
o
b‘
. Table 6.2
¢ Correlation Peak Location and Values for
A Template and 1/2 Scaled Rotated Targets
" ~ (Note: Scale shifts 32 pixels for a 2:1 scale change.)
- File Name Peak Location Peak Value
b R3083_s2_tmp_3083.dat 0,32 57692
A R3083_s2r5_tmp_3083.dat 15,32 54486
- R3083_s2r10_tmp_3083.dat 29,32 53069
- R3083_s2r15_tmp_3083.dat 43,32 54784
s ¢ R3083_s2r20_tmp_3083.dat 57,32 53173
k R3083_s2r25_tmp_3083.dat 70,32 53290
y R3083_s2r30_tmp_3083.dat 85,32 54218
" R3083_s2r35_tmp_3083.dat 98,32 54785
» R3083_s2r40_tmp_3083.dat 113,32 54686
Al R3083 s2r45_tmp 3083.dat 126,32 55389
o
i"
o Table 6.3
o Correlation Peak Location and Values for
5 Template and 1/4 Scaled Rotated Targets
o - (Note: Both scale and rotation can be calculated.)
File Name Peak Location Peak Value
" R3083_s4_tmp_3083.dat 0,62 53439
48 R3083_s4rS_tmp_3083.dat 15,62 43481
> R3083_s4r10_tmp_3083.dat 27,61 45756
v R3083_s4r15_tmp_3083.dat 42,62 47401
= C R3083_s4r20_tmp_3083.dat 57,62 49740
-4 R3083_s4r25_tmp_3083.dat 69,62 51297
- R3083_s4r30_tmp_3083.dat 83,62 46519
39 R3083_s4r35_tmp_3083.dat 101,62 48028
R3083_s4r40_tmp_3083.dat 110,61 47040
2 R3083_s4r45_tmp_3083.dat 125,62 51649
- ¢ ‘
[
#
>
5
B 6-12

ey . . B K U T A ! y 3 v, N Wil
O (e e ey e L R T e L R e RO B L R N

PdClh
gy Ve 1 2% 0

l(‘

[\

Table 6.4
Files for Set 1 Experiments

File Name Image Template
Training Class 1
R3028_tmp_3028.dat Front Tank Front Tank
R3074_tmp_3074.dat Side Tank Side Tank
R3066_tmp_3066.dat Front Tank Front Tank
R3088_tmp_3088.dat Front Tank Front Tank
R3083_tmp_3083.dat Side Tank Side Tank
R3195_tmp_3195.dat Side Tanker Side Tanker
R3197_tmp_3197 dat Front Tank Front Tank
R3215_tmp_3215.dat Front Jeep Front Jeep
R3197tr_tmp_3197u.dat Side Tanker Side Tanker
Training Class 2
R3028_r10_tmp_3195.dat Front Tank Side Tanker
r3083_r10_tmp_3195.dat Side Tank Side Tanker
R3195_r10_tmp_3028.dat Side Tanker Front Tank
R3033_tmp_3028.dat Side Tank Front Tank
R3190_p47_tmp_3090.dat Side Tanker Front Tank
R3033_tmp_3195.dat Side Tank Side Tanker
R3190_p165_tmp_3090.dat Side Tanker Front Tank
R3090_r10_tmp_3195.dat Front Tank Side Tanker
R3197ua_tmp 3066.dat Side Tanker Front tank
Test Class 1
R3042_tmp_3042.dat Side Tank Side Tank
R3051_tmp_3051.dat Front Tank Front Tank
R3090_tmp_3090.dat Front Tank Front Tank
R3190_p165_tmp_3190_p165.dat Side Tanker Side Tanker
R3190_p221_tmp_3190_p221.dat Side Tanker Side Tanker
R3190_p47_tmp_3190_p47.dat Side Tanker Side Tanker
R3195Tank_tmp_3195Tank.dat Side Tank Side Tank
R3190_T227_tmp_3190_t227.dat Side Tank Side Tank
R3033 tmp_3033.dat Side Tank Side Tank
Test Class 2
R3051_tmp_3195.dat Front Tank Side Tanker
R3195_r10_tmp_3028.dat Side Tanker Front Tank
R3195Tank_tmp_3028.dat Side Tank Front Tank
R3197tr_tmp_3028.dat Side Tanker Front Tank
R3197tr_tmp_3083.dat Side Tanker Side Tank
R3190_p221_tmp_3083.dat Side Tanker Side Tank
R3090_tmp_3083.dat Front Tank Side Tank
R3074_tmp_3195.dat Side Tank Side Tanker
R3042 tmp_3195.dat Side Tank Side Tanker

6-13

W g —w

M ande 0o Shail B Btk Bhnl ik -Shadl el 4

e Sl 8 A oo A g e den At Sta Sea She Bie Ade-Aba She She She Bte she Al A bl Sabaaal Sal ok Rad

Table 6.5
Training Files for Set 2 Experiments

File Name Image Template
Training Class 1
R3028_tmp_3028.dat Front Tank Front Tank
R3028_r40_tmp_3028.dat Rotated Front Tank Front Tank
R3066_tmp_3066.dat Front Tank Front Tank
R3066_r40_tmp_3066.dat Rotated Front Tank Front Tank
R3074_tmp_3074.dat Side Tank Side Tank
R3074_r40 1mp_3074.dat Rotated Side Tank Side Tank
R3088_tmp_3088.dat Front Tank Front Tank
R3088_r40_tmp_3088.dat Rotated Front Tank Front Tank
R3083_tmp_3083.dat Side Tank Side Tank
R3083_r40_tmp_3083.dat Rotated Side Tank Side Tank
R3195_tmp_3195.dat Side Tanker Side Tanker
R3195_r40_tmp_3195.dat Rotated Side Tanker Side Tanker
R3042_tmp_3042.dat Side Tank Side Tank
R3042 r40 _tmp 3042.dat Rotated Side Tank Side Tank
Training Class 2
R3028_R10_tmp_3195.dat Rotated Front Tank Side Tanker
R3066_tmp_3195.dat Front Tank Side Tanker
R3066_tmp_3083.dat Front Tank Side Tank
R3074_tmp_3195.dat Side Tank Side Tanker
R3074_tmp_3090.dat Side Tank Front Tank
R3088_tmp_3190_p47.dat Front Tank Side Tanker
R3088_tmp_3083.dat Front Tank Side Tank
R3083_r10_tmp_3195.dat Rotated Side Tank Side Tanker
R3083_r10_tmp_3028.dat Rotated Side Tank Front Tank
R3195_r10_tmp_3028.dat Rotated Side Tanker Front Tank
R3042_tmp_3195.dat Side Tank Side Tanker
R3042 tmp 3090.dat Side Tank Front Tank

-

-

N 30 VI S ARy
p Yy I'! A I ’.’31'!‘5’!‘; . ;‘l.,.‘.. *

»

6-14

‘A7 () OO (\ D PP N e
he, --'"-" -’! -:?‘:‘,7!0".-4"‘0"‘24'*“"7..9:';&‘1".'!!1?"'»‘

'+t !

x
¥ .

gt
t

- WA NN

1 - <« v
R @

N
R AR

vvvvv

Table 6.6
Test Files for Set 2 Experiments

File Name Image Template
Test Class 1
R3028_r10_tmp_3028.dat Rotated Front Tank Front Tank
R3028_r20_tmp_3028.dat Rotated Front Tank Front Tank
R3028_r30_tmp_3028.dat Rotated Front Tank Front Tank
R 3006_r10_tmp_3066.dat Rotated Front Tank Front Tank
R3066_r20_tmp_3066.dat Rotated Front Tank Front Tank
R3066_r30_tmp_3066.dat Rotated Front Tank Front Tank
R3074_r10_tmp_3074.dat Rotated Side Tank Side Tank
R3074_r20_tmp_3074.dat Rotated Side Tank Side Tank
R3074_r30_tmp_3074.dat Rotated Side Tank Side Tank
R3088_r10_tmp_3088.dat Rotated Front Tank Front Tank
R3088_r20_tmp_3088.dat Rotated Front Tank Front Tank
R3088_r30_tmp_3088.dat Rotated Front Tank Front Tank
R3083_r10_tmp_3083.dat Rotated Side Tank Side Tank
R3083_r20_tmp_3083.dat Rotated Side Tank Side Tank
R3083_r30_tmp_3083.dat Rotated Side Tank Side Tank
R3195_r10_tmp_3195.dat Rotated Side Tanker Side Tanker
R3195_r20_tmp_3195.dat Rotated Side Tanker Side Tanker
R3195_r30_tmp_3195.dat Rotated Side Tanker Side Tanker
R3042_r10_tmp_3042.dat Rotated Front Tank Front Tank
R3042_r20_tmp_3042.dat Rotated Front Tank Front Tank
R3042 r30 tmp 3042 .dat Rotated Front Tank Front Tank
Test Class 2
R3028_r40_tmp_3195.dat Rotated Front Tank Side Tanker
R3066_r40_tmp_3195.dat Rotated Front Tank Side Tanker
R3066_r20_tmp_3195.dat Rotated Front Tank Side Tanker
R3066_r40_tmp_3083.dat Rotated Front Tank Side Tank
R3066_r20_tmp_3083.dat Rotated Front Tank Side Tank
R3074_r40_tmp_3195.dat Rotated Side Tank Side Tanker
R3074_r20_tmp_3195.dat Rotated Side Tank Side Tanker
R3074_r40_tmp_3090.dat Rotated Side Tank Front Tank
R3074_r20_tmp_3090.dat Rotated Side Tank Front Tank
R3088_r20_tmp_3195.dat Rotated Front Tank Side Tanker
R3088_r40_wmp_3195.dat Rotated Front Tank Side Tanker
R3088_r20_tmp_3083.dat Rotated Front Tank Side Tank
R3088_r40_tmp_3083.dat Rotated Front Tank Side Tank
R3042_r20_tmp_3090.dat Rotated Side Tank Front Tank
R3042_r40_tmp_3090.dat Rotated Side Tank Front Tank
R3042_r20_tmp_3195.dat Rotated Side Tank Side Tanker
R3042_r40_tmp_3195.dat Rotated Side Tank Side Tanker
R3083_r20_tmp_3195.dat Rotated Side Tank Side Tanker
R3083_r40_tmp_3195.dat Rotated Side Tank Side Tanker
R3083_r20_tmp_3028.dat Rotated Side Tank Front Tank
R3083_r40_tmp_3028.dat Rotated Side Tank Front Tank
R3195 r40 tmp 3028.dat Rotated Side Tanker Front Tank

6-15

P T

AP S A OO Pt R Qe i, SARSRY
Cla § ¥ »

. B A A AT N TR
.00y .%f‘}h‘t?t‘!?i‘.!ﬁ el !’&.-:f"!--3c’"‘f‘f“i.fh!-‘1;.""

S £

9

Class 1 Training Files for Set 3 Experiments

Table 6.7

mmmvaWWWJVJ Yy
"JT

File Name Image Template
Training Class 1
R3197u_tmp_3195.dat Side Tanker Side Tanker
R3190_p165_tmp_3195.dat Side Tanker Side Tanker
R3190_p221_tmp_3195.dat Side Tanker Side Tanker
R3074_tmp_3083.dat Side Tank Side Tank
R3051_tmp_3090.dat Front Tank Front Tank
R3042_tmp_3083.dat Side Tank Side Tank
R3090_r40_tmp_3028.dat Rotated Front Tank Front Tank
R3090_tmp_3028.dat Front Tank Front Tank
R3033_r40_mmp_3083.dat Rotated Side Tank Side Tank
R3033_r10_tmp_3083.dat Rotated Side Tank Side Tank
R3033_tmp_3083.dat Side Tank Side Tank
R3028_tmp_3028.dat Front Tank Front Tank
R3028_r40_tmp_3028.dat Rotated Front Tank Front Tank
R3066_tmp_3066.dat Front Tank Front Tank
R3066_r40_tmp_3066.dat Rotated Front Tank Front Tank
R3074_tmp_3074.dat Side Tank Side Tank
R3074_r40_tmp_3074.dat Rotated Side Tank Side Tank
R3088_tmp_3088.dat Front Tank Front Tank
R3088_r40_tmp_3088.dat Rotated Front Tank Front Tank
R3083_tmp_3083.dat Side Tank Side Tank
R3083_r40_tmp_3083.dat Rotated Side Tank Side Tank
R3195_tmp_3195.dat Side Tanker Side Tanker
R3195_r40_tmp_3195.dat Rotated Side Tanker Side Tanker
R3042_tmp_3042.dat Side Tank Side Tank
R3042 r40_tmp_3042.dat Rotated Side Tank Side Tank

6-16

v
)
w?
- Table 6.8
& Class 2 Training Files for Set 3 Experiments
'. ® File Name Image Template
- Training Class 2
. R3197TR_tmp_3028.dat Side Tanker Front Tank
< R3197TR_tmp_3083.dat Side Tanker F-ont Tank
- R3190_p221_tmp_3090.dat Side Tanker Front Tank
(- R3190_p221_tmp_3083.dat Side Tanker Side Tank
R R3190_p165_tmp_3090.dat Side Tanker Front Tank
- R3190_p165_tmp_3083.dat Side Tanker Side Tank
R3051_tmp_3195.dat Front Tank Side Tanker
- R3051_tmp_3083.dat Front Tank Side Tank
- R3090_tmp_3083.dat Front Tank Side Tank
- R3090_tmp_3195.dat Front Tank Side Tanker
M R3033_tmp_3028.dat Side Tank Front Tank
R3033_tmp_3195.dat Side Tank Side Tanker
- R3028_R10_tmp_3195.dat Rotated Front Tank Side Tanker
- R3066_tmp_3195.dat Front Tank Side Tanker
- R3066_tmp_3083.dat Front Tank Side Tank
- R3074_tmp_3195.dat Side Tank Side Tanker
v R3074_tmp_3090.dat Side Tank Front Tank
3 R3088_tmp_3195.dat Front Tank Side Tanker
) R3088_tmp_3083.dat Front Tank Side Tank
v R3083_r10_tmp_3195.dat Rotated Side Tank Side Tanker
P R3083_r10_tmp_3028.dat Rotated Side Tank Front Tank
N R3195_r10_tmp_3028.dat Rotated Side Tanker Front Tank
(R3042_tmp_3195.dat Side Tank Side Tanker
. R3042 tmp 3090.dat Side Tank Front Tank
j @
4
7
<
2
[L]
¢
L]
&
S
8
B
6-17

P2 Ed & B

W 2's xS

\ ‘b‘ 5

Sl

R DR AP AR -

-
»

alar v s
4}

- - -
g

.
5
9

...........

Table 6.9
Class 1 Test Files for Set 3 Experiments

File Name Image Template
Test Class 1
R3190_tmp_3083.dat Side Tank Side Tank
R3088_tmp_3090.dat Front Tank Front Tank
R3035_tmp_3083.dat Side Tank Side Tank
R3066_tmp_3090.dat Front Tank Front Tank
R3190_p47_tmp_3195.dat Side Tanker Side Tanker
R3197TR _r40_tmp_3195.dat Rotated Side Tanker Side Tanker
R3195TANK _tmp_3083.dat Side Tank Side Tank
R3195TANK_r40_tmp_3083.dat Rotated Side Tank Side Tank
R3090_r30_tmp_3028.dat Rotated Front Tank Front Tank
R3090_r20_tmp_3028.dat Rotated Front Tank Front Tank
R3090_r10_tmp_3028.dat Rotated Front Tank Front Tank
R3033_r30_tmp_3083.dat Rotated Side Tank Side Tank
R3033_r20_tmp_3083.dat Rotated Side Tank Side Tank
R3028_r10_tmp_3028.dat Rotated Front Tank Front Tank
R3028_r20_tmp_3028.dat Rotated Front Tank Front Tank
R3028_r30_tmp_3028.dat Rotated Front Tank Front Tank
R3066_r10_tmp_3066.dat Rotated Front Tank Front Tank
R3066_r20_tmp_3066.dat Rotated Front Tank Front Tank
R3066_r30_tmp_3066.dat Rotated Front Tank Front Tank
R3074_r10_tmp_3074.dat Rotated Side Tank Side Tank
R3074_r20_tmp_3074.dat Rotated Side Tank Side Tank
R3074_r30_tmp_3074.dat Rotated Side Tank Side Tank
R3088_r10_tmp_3088.dat Rotated Front Tank Front Tank
R3088_r20_tmp_3088.dat Rotated Front Tank Front Tank
R3088_r30_tmp_3088.dat Rotated Front Tank Front Tank
R3083_r10_tmp_3083.dat Rotated Side Tank Side Tank
R3083_r20_tmp_3083.dat Rotated Side Tank Side Tank
R3083_r30_tmp_3083.dat Rotated Side Tank Side Tank
R3195_r10_tmp_3195.dat Rotated Side Tanker Side Tanker
R3195_r20_tmp_3195.dat Rotated Side Tanker Side Tanker
R3195_r30_tmp_3195.dat Rotated Side Tanker Side Tanker
R3042_r10_tmp_3042.dat Rotated Front Tank Front Tank
R3042_r20_tmp_3042.dat Rotated Front Tank Front Tank
R3042 r30 tmp_3042.dat Rotated Front Tank Front Tank

i ¥ T PR B B% % XV Tee Y ¥, 29 Y.) 'a"'i—' CA R T U e
Vit by " a6, '!&ep.ﬁgn.i.m!" Wyt 'n:ﬁ_ J fn.."- .. I’L‘l‘e‘& v l’-‘l‘»’t (3

6-18

LR Ry

RSN o e VTR VN g N W AR
,_ “w,) s'.‘ o AN %“’-r ¥ .-‘~'r"$':l0'e f'}l ™ l'w‘l‘p i‘r"'

.....

‘\

Table 6.10
Class 2 Test Files for Set 3 Experiments

File Name Image Template
Test Class 2
R3195TANK _tmp_3028.dat Side Tank Front Tank
R3195TANK _tmp_3195.dat Side Tank Side Tanker
R3197TR _tmp_3090.dat Side Tanker Front Tank
R3197TR _tmp_3083.dat Side Tanker Side Tank
R3190_p47_tmp_3090.dat Side Tanker Front Tank
R3190_p47_tmp_3083.dat Side Tanker Side Tank
R3190_T227_tmp_3090.dat Side Tank Front Tank
R3190_T227_tmp_3195.dat Side Tank Side Tanker
R3035_tmp_3090.dat Side Tank Front Tank
R3035_tmp_3195.dat Side Tank Side Tanker
R3090_r10_tmp_3083.dat Rotated Front Tank Side Tank
R3090_r10_tmp_3195.dat Rotated Front Tank Side Tanker
R3090_r20_tmp_3083.dat Rotated Front Tank Side Tank
R3090_r30_tmp_3083.dat Rotated Front Tank Side Tank
R3090_r20_tmp_3195.dat Rotated Front Tank Side Tanker
R3090_r30_tmp_3195.dat Rotated Front Tank Side Tanker
R3033_r20_tmp_3028.dat Rotated Side Tank Front Tank
R3033_r30_tmp_3028.dat Rotated Side Tank Front Tank
R3033_r20_tmp_3195.dat Rotated Side Tank Side Tanker
R3033_r30_tmp_3195.dat Rotated Side Tank Side Tanker
R3028_r40_tmp_3195.dat Rotated Front Tank Side Tanker
R3066_r40_tmp_3195.dat Rotated Front Tank Side Tanker
R3066_r20_tmp_3195.dat Rotated Front Tank Side Tanker
R3066_r40_tmp_3083.dat Rotated Front Tank Side Tank
R3066_r20_tmp_3083.dat Rotated Front Tank Side Tank
R3074_r40_tmp_3195.dat Rotated Side Tank Side Tanker
R3074_r20_tmp_3195.dat Rotated Side Tank Side Tanker
R3074_r40_tmp_3090.dat Rotated Side Tank Front Tank
R3074_r20_tmp_3090.dat Rotated Side Tank Front Tank
R3088_r20_tmp_3195.dat Rotated Front Tank Side Tanker
R3088_r40_tmp_3195.dat Rotated Front Tank Side Tanker
R3088_r20_tmp_3083.dat Rotated Front Tank Side Tank
R3088_r40_tmp_3083.dat Rotated Front Tank Side Tank
R3042_r20_tmp_3090.dat Rotated Side Tank Front Tank
R3042_r40_tmp_3090.dat Rotated Side Tank Front Tank
R3042_r20_tmp_3195.dat Rotated Side Tank Side Tanker
R3042_r40_tmp_3195.dat Rotated Side Tank Side Tanker
R3083_r20_tmp_3195.dat Rotated Side Tank Side Tanker
R3083_r40_tmp_3195.dat Rotated Side Tank Side Tanker
R3083_r20_tmp_3028.dat Rotated Side Tank Front Tank
R3083_r40_tmp_3028.dat Rotated Side Tank Front Tank
R3195 r40_tmp_3028.dat Rotated Side Tanker Front Tank

e P AT " A A) e T
SEA

o

"

6-19

v, u.

Ky o o . ﬂ‘.‘:" A u".’n LAt 8y Ry ,. l.“ -"'.‘P' T

Table 6.11
Classification Results for Set 1 Range Data
(Note: Distances are calculated from the center of the class 1 training data.)

File Name Distance Neural Net
Node 1 Node 2
Training Class 1
R3028_tmp_3028.dat 0.0724 0.9631 0.0364
R3074_tmp_3074.dat 0.0388 0.9629 0.0366
R3066_tmp_3066.dat 0.1199 0.9631 0.0364
R3088_tmp_3088.dat 0.0783 0.9631 0.0364
R3083_tmp_3083.dat 0.0806 0.9625 0.0370
R3195_tmp_3195.dat 0.1298 0.9546 0.0448
R3197_tmp_3197.dat 0.0666 0.9631 0.0364
R3215_tmp_3215.dat 0.1088 0.9631 0.0363
R3197a_tmp 3197w.dat 0.1365 0.9143 0.0848
Training Class 2
R3028_r10_tmp_3195.dat 0.2721 0.0399 0.9604
R3083_r10_tmp_3195.dat 0.2756 0.0408 0.9595
R3195_r10_tmp_3028.dat 0.2355 0.0739 0.9264
R3033_tmp_3028.dat 0.2129 0.0805 0.9198
R3190_p47_tmp_3090.dat 0.2144 0.0521 0.9482
R3033_tmp_3195.dat 0.2876 0.0397 0.9606
R3190_p165_tmp_3090.dat 0.2142 0.0498 0.9504
R3090_r10_tmp_3195.dat 0.2784 0.0391 0.9611
R3197a_tmp_3066.dat 0.3102 0.0387 0.9615
Test Class 1
R3042_tmp_3042.dat 0.0682 0.9631 0.0364
R3051_tmp_3051.dat 0.0942 0.9631 0.0364
R3090_tmp_3090.dat 0.1734* 0.9631 0.0363
R3190_p165_tmp_3190_p165.dat 0.0437 0.9624 0.0371
R3190_p221_tmp_3190_p221.dat 0.0834 0.9623 0.0371
R3190_p47_tmp_3190_p47.dat 0.0514 0.9628 0.0366
R3195Tank_tmp_3195Tank.dat 0.1138 0.9579 0.0415
R3190_T227_tmp_3190_t227.dat 0.1214 0.9631 0.0363
R3033 tmp_3033.dat 04311 0.1164 0.0365
Test Class 2
R3051_tmp_3195.dat 0.2707 0.041i 0.9592
R3195_r10_tmp_3028.dat 0.2355 0.0739 0.9264
R3195Tank_tmp_3028.dat 0.1784* 0.1866 0.8135
R3197a_tmp_3028.dat 0.3136 0.0387 0.9615
R3197tr_tmp_3083.dat 0.3157 0.0386 0.9616
R3190_p221_tmp_3083.dat 0.2542 0.0425 0.9577
R3090_tmp_3083.dat 0.2673 0.0417 0.9585
R3074_tmp_3195.dat 0.2781 0.0394 0.9609
R3042_tmp_3195.dat 0.2915 0.0392 0.9610

* Represents a misclassified result or classification with a very low figure of merit.
(Note: With thresholds of 0.8 and 0.2, the neural net
gives perfect results with an excellent figure of merit.)

6-20

ox XSRS R AM MO
e RN e

Table 6.12
Classification Results for Set 1 Binary Data
(Note: Distances are calculated from the center of the class 1 training data.)

File Name Distance Neural Net
Node 1 Node 2
Training Class 1
R3028_btmp_3028.dat 0.1181 0.9701 0.0301
R3074_btmp_3074.dat 0.0376 0.9699 0.0303
R3066_btmp_3066.dat 0.1042 0.9701 0.0302
R3088_btmp_3088.dat 0.0540 0.9701 0.0302
R3083_btmp_3083.dat 0.0717 0.9696 0.0306
R3195_btmp_3195.dat 0.1079 0.9675 0.0328
R3197_btmp_3197.dat 0.0544 0.9699 0.0303
R3215_btmp_3215.dat 0.0942 0.9701 0.0301
R3197tr_btmp_3197tr.dat 0.1230 0.9440 0.0566
Training Class 2
R3028_r10_btmp_3195.dat 0.2477 0.3699* 0.6312*
R3083_r10_btmp_3195.dat 0.2481 0.0460 0.9537
R3195_r10_btmp_3028.dat 0.1905 0.0479 0.9518
R3033_btmp_3028.dat 0.1728 0.0624 0.9372
R3190_p47_btmp_3090.dat 0.2468 0.0446 0.9551
R3033_btmp_3195.dat 0.2523 0.0443 0.9554
R3190_p165_btmp_3090.dat 0.1877 0.0610 0.9386
R3090_r10_btmp_3195.dat 0.2382 0.0450 0.9547
R3197tr_btmp_3066.dat 0.2757 0.0439 0.9558
Test Class 1
R3042_btmp_3042.dat 0.0376 0.9701 0.0302
R3051_btmp_3051.dat 0.0640 0.9701 0.0302
R3090_btmp_3090.dat 0.0971 09701 0.0301
R3190_p165_btmp_319C_p165.dat 0.0326 0.9700 0.0303
R3190_p221_btmp_3190_p221.dat 0.0686 0.9699 0.0304
R3190_p47_btmp_3190_p47.dat 0.0539 0.9701 0.0302
R3195Tank_btmp_3195Tank.dat 0.1058 0.9681 0.0322
R3190_t227_btmp_3190_t227.dat 0.0578 0.9701 0.0302
R3033_btmp_3033.dat 0.0735 0.9695 0.0307
Test Class 2
R3051_btmp_3195.dat 0.2632 0.0443 0.9554
R3195_r10_btmp_3028.dat 0.1905 0.0479 0.9518
R3195Tank_btmp_3028.dat 0.2548 0.0451 0.9546
R3197tr_btmp_3028.dat 0.2791 0.0439 0.9558
R3197tr_btmp_3083.dat 0.2794 0.0439 0.9558
R3190_p221_btmp_3083.dat 0.2273 0.0456 0.9540
R3090_btmp_3083.dat 0.2298 0.0455 0.9542
R3074_btmp_3195.dat 0.2528 0.0449 0.9548
R3042 btmp_3195.dat 0.2545 0.0447 0.9550

* Values progressed to 0.1655 and 0.8347 after 9000 training file iterations.
(Note: Both methods gave perfect classification.
No significant difference between range and binary data.)

1=
Table 6.13
Classification Results for Set 2 Range Training Data
° (Note: Distances are calculated from the center of the class 1 training data.)
File Name Distance Neural Net
Node 1 Node 2
Training Class 1
R3028_tmp_3028.dat 0.1321 0.9842 0.0140
P R3028_r40_tmp_3028.dat 0.0575 0.9836 0.0150
R3066_tmp_3066.dat 0.1390 0.9844 0.0137
R3066_r40_tmp_3066.dat 0.1342 0.9807 0.0184
R3074_tmp_3074.dat 0.0464 0.9840 0.0145
R3074_r40_tmp_3074.dat 0.1074 0.9786 0.0209
R3088_tmp_3088.dat 0.1272 0.9840 0.0144
P R3088_r40_tmp_3088.dat 0.0419 0.9822 0.0169
R3083_tmp_3083.dat 0.0678 0.9835 0.0151
R3083_r40_tmp_3083.dat 0.0667 0.9824 0.0165
R3195_tmp_3195.dat 0.0906 0.9795 0.0200
R3195_r40_tmp_3195.dat 0.1207 0.9553 0.0465
R3042_tmp_3042.dat 0.1222 0.9844 0.0138
R3042_r40_tmp_3042.dat 0.1419 0.9730 0.0278
. Training Class 2
R3028_R10_tmp_3195.dat 0.2158 0.0177 0.9835
R3066_tmp_3195.dat 0.2394 0.0156 0.9862
R3066_tmp_3083.dat 0.2489 0.0154 0.9865
R3074_tmp_3195.dat 0.2221 0.0168 0.9846
) R3074_tmp_3090.dat 0.1734 0.0220 09794
® R3088_tmp_3190_p47.dat 0.2160 0.0170 0.9843
R3088_tmp_3083.dat 0.2119 0.0191 0.9821
R3083_r10_tmp_3195.dat 0.2213 0.0173 0.9841
R3083_r10_tmp_3028.dat 0.2057 0.0204 0.9808
R3195_r10_tmp_3028.dat 0.1828 0.0421 0.9576
R3042_tmp_3195.dat 0.2366 0.0164 0.9851
€ R3042_tmp_3090.dat 0.2093 0.0235 0.9768
(Note: Distance threshold at 0.16)
.
Y
e

. 6-22

&

o, o, o
't l'\':‘! gttty ¢'l’:'| 2

Table 6.14
Classification Results for Set 2 Range Test Data

(Note: Distances are calculated from the center of the class 1 training data.)

W aa-are nis nia oS -sti-ang cas-ofs adh miaadavadainde vae-

File Name Distance Neural Net

Node 1 Node 2
Test Class 1
R3028_r10_tmp_3028.dat 0.0579 0.9834 0.0153
R3028_r20_tmp_3028.dat 0.0501 0.9837 0.0148
R3028_r30_tmp_3028.dat 0.0528 0.9835 0.0151
R3066_r10_tmp_3066.dat 0.1119 0.9824 0.0168
R3066_r20_tmp_3066.dat 0.1468 0.9825 0.0166
R3066_r30_tmp_3066.dat 0.0997 0.9832 0.0156
R3074_r10_tmp_3074.dat 0.1102 0.8776 0.1226
R3074_r20_tmp_3074.dat 0.1134 0.8258 0.1732
R3074_r30_tmp_3074.dat 0.1401 0.6706* 0.3310
R3088_r10_tmp_3088.dat 0.0455 0.9828 0.0161
R3088_r20_tmp_3088.dat 0.0355 0.9833 0.0154
R3088_r30_tmp_3088.dat 0.0397 0.9836 0.0150
R3083_r10_tmp_3083.dat 0.0723 09818 0.0172
R3083_r20_tmp_3083.dat 0.0699 0.9828 0.0160
R3083_r30_tmp_3083.dat 0.0655 0.9824 0.0165
R3195_r10_tmp_3195.dat 0.1291 09112 0.0917
R3195_r20_tmp_3195.dat 0.1264 0.9380 0.0647
R3195_r30_tmp_3195.dat 0.1174 0.9489 0.0528
R3042_r10_tmp_3042.dat 0.1162 0.9801 0.0191
R3042_r20_tmp_3042.dat 0.0929 0.9822 0.0167
R3042 r30_tmp_3042.dat 0.1419 0.9808 0.0186
Test Class 2
R3028_r40_tmp_3195.dat 0.2489 0.0159 0.9858
R3066_r40_tmp_3195.dat 0.2410 0.0159 0.9858
R3066_r20_tmp_3195.dat 0.2359 0.0159 0.9858
R3066_r40_tmp_3083.dat 0.2482 0.0153 0.9867
R3066_r20_tmp_3083.dat 0.2026 0.0191 0.9819
R3074_r40_tmp_3195.dat 0.2454 0.0154 0.9866
R3074_r20_tmp_3195.dat 0.2285 0.0161 0.9856
R3074_r40_tmp_3090.dat 0.2010 0.0360 0.9623
R3074_r20_tmp_3090.dat 0.1677 0.0416 0.9575
R3088_r20_tmp_3195.dat 0.2402 0.0159 0.9858
R3088_r40_tmp_3195.dat 0.2468 0.0167 0.9849
R3088_r20_tmp_3083.dat 0.1887 0.0558 09417
R3088_r40_tmp_3083.dat 0.1732 0.1201 0.8722
R3042_r20_tmp_3090.dat 0.2208 0.0187 0.9834
R3042_r40_tmp_3090.dat 0.2286 0.0166 0.9851
R3042_r20_tmp_3195.dat 0.2433 0.0161 0.9854
R3042_r40_trp_3195.dat 0.2362 0.0165 0.9850
R3083_r20_tmp_3195.dat 0.2262 0.0183 0.9828
R3083_r40_tmp_3195.dat 0.2250 0.0176 0.9837
R3083_r20_tmp_3028.dat 0.2153 04513 0.5635%
R3083_r40_tmp_3028.dat 0.1872 0.2668 0.7398*
R3195 r40_wmp_3028.dat 0.2280 0.0182 0.9833

* Represents a nonclassification with thresholds of 0.8 and 0.2
(Note: Distance classifications are good, but at the expense of a figure of merit.)

et o W i AW o SO

.v' s, L% ™

[] [) Ll Ik N X

6-23

-;-‘_-‘.-¢"-- -‘(- N
".‘ - .. ‘I N

J
£

AP P s S Y

AN I e

et y
SORTARE L CA e ._',’\{_‘_:1'-4_"\.‘!.\-("- .
Chiathi ML " Chabedt)k b ' 3

L S

-

RV T T e P
o

A

5 YA, ¥P% ! o

1

e
Table 6.15
Classification Results for Set 2 Binary Training Data
(Note: Distances are calculated from the center of the class 1 training data.)
®
File Name Distance Neural Net
Node 1 Node 2
Training Class 1
R3028_btmp_3028.dat 0.1619* 0.9764 0.0213
R3028_r40_btmp_3028.dat 0.0615 0.9758 0.0231
& R3066_btmp_3066.dat 0.1209 0.9766 0.0207
R3066_r40_btmp_3066.dat 0.1070 0.9677 0.0314
R3074_btmp_3074.dat 0.0345 0.9758 0.0226
R3074_r40_btmp_3074.dat 0.1030 0.9567 0.0438
R3088_btmp_3088.dat 0.0886 0.9757 0.0231
R3088_r40_btmp_3088.dat 0.0309 0.9724 0.0269
- R3083_btmp_3083.dat 0.0582 0.9750 0.0235
R3083_r40_btmp_3083.dat 0.0663 0.9717 0.0274
R3195_btmp_3195.dat 0.0824 0.9713 0.0279
R3195_r40_btmp_3195.dat 0.1030 0.9569 0.0444
R3042_btmp_3042.dat 0.0772 0.9763 0.0216
R3042 r40 btmp_3042.dat 0.0980 0.9494 0.0523
< Training Class 2
R3028_R1G_btmp_3195.dat 0.2066 0.0222 0.9812
R3066_btmp_3195.dat 0.2171 0.0222 0.9814
R3066_btmp_3083.dat 0.2159 0.0417 0.9639
R3074_btmp_3195.dat 0.2137 0.0221 0.9819
R3074_btmp_3090.dat 0.1521 0.0460 0.9557
» R3088_btmp_3190_p47.dat 0.2002 0.0230 0.9806
R3088_btmp_3083.dat 0.1822 0.0346 0.9663
R3083_r10_btmp_3195.dat 0.2083 0.0234 0.9797
R3083_r10_btmp_3028.dat 0.1851 0.0243 0.9783
R3195_r10_btmp_3028.dat 0.1522 0.0439 0.9579
R3042_btmp_3195.dat 0.2138 0.0230 0.9804
¢ R3042_btmp_3090.dat 0.1892 0.0310 09713
* Indicates a misclassification with a distance threshold of 0.14
(Note: the training set with the neural net is perfectly classified.)
@
>
@
6-24
7]

’*9«.f‘?e'.t!fe?@fﬁ!".*? :

TR l-‘"\?"??!"“

T T R T P TPy Ty v e --vT
<
Table 6.16
Classification Results for Set 2 Binary Test Data
® (Note: Distances are calculated from the center of the class 1 training data.)
File Name Distance Neural Net
Node 1 Node 2
Test Class 1
R3028_r10_btmp_3028.dat 0.0475 0.9758 0.0230
® R3028_r20_btmp_3028.dat 0.0589 0.9759 0.0226
R3028_r30_btmp_3028.dat 0.0550 0.9754 0.0237
R3066_r10_btmp_3066.dat 0.1105 0.9570 0.0464
R3066_r20_btmp_3066.dat 0.1305 0.9729 0.0277
R3066_r30_btmp_3066.dat 0.1072 0.9758 0.0223
R3074_r10_btmp_3074.dat 0.1218 0.3602 0.6323*
Y R3074_r20_btmp_3074.dat 0.1076 0.7895 0.2161
R3074_r30_btmp_3074.dat 0.1263 0.5568 0.4477
R3088_r10_btmp_3088.dat 0.0313 0.9723 0.0274
R3088_r20_btmp_3088.dat 0.0254 0.9738 0.0259
R3088_r30_btmp_3088.dat 0.0206 0.9744 0.0246
R3083_r10_btmp_3083.dat 0.0716 0.9674 0.0325
6 R3083_r20_btmp_3083.dat 0.0664 0.9708 0.0286
R3083_r30_btmp_3083.dat 0.0666 0.9717 0.0271
R3195_r10_btmp_3195.dat 0.1111 0.9147 0.0903
R3195_r20_btmp_3195.dat 0.1116 0.9389 0.0648
R3195_r30_btmp_3195.dat 0.1019 0.9457 0.0566
R3042_r10_btmp_3042.dat 0.1012 0.7934* 0.2253
® R3042_r20_btmp_3042.dat 0.0841 0.9701 0.0302
R3042 r30_btmp_3042.dat 0.0916 0.9493 0.0521
Test Class 2
R3028_r40_btmp_3195.dat 0.2192 0.0220 0.9809
R3066_r40_btmp_3195.dat 0.2255 0.0218 0.9820
R3066_r20_btmp_3195.dat 0.2218 0.0222 0.9814
® R3066_r40_btmp_3083.dat 0.2088 0.0260 0.9781
R3066_r20_btmp_3083.dat 0.1847 0.0256 0.9768
R3074_r40_btmp_3195.dat 0.2158 0.0221 0.9809
R3074_r20_btmp_3195.dat 0.2018 0.0228 0.9806
R3074_r40_btmp_3090.dat 0.1941 0.0243 0.9780
R3074_r20_btmp_3090.dat 0.1937 0.0237 0.9793
G R3088_r20_btmp_3195.dat 0.2188 0.0217 0.9819
’ R3088_r40_btmp_3195.dat 0.2138 0.0221 0.9814
R3088_r20_btmp_3083.dat 0.1803 0.0356 0.9649
R3088_r40_btmp_3083.dat 0.1637 0.0580 0.9426
R3042_r20_btmp_3090.dat 0.1669 0.0254 0.9777
R3042_r40_btmp_3090.dat 0.1680 0.0353 0.9660
R3042_r20_btmp_3195.dat 0.2163 0.0217 0.9822
G R3042_r40_btmp_3195.dat 0.2089 0.0231 0.9808
R3083_r20_btmp_3195.dat 0.2179 0.0232 0.9799
R3083_r40_btmp_3195.dat 0.2154 0.0231 0.9800
R3083_r20_btmp_3028.dat 0.1947 0.0239 0.9786
R3083_r40_btmp_3028.dat 0.1890 0.0280 0.9732
o R3195 r40 btmp_3028.dat 0.1772 0.0266 0.9749
* Represents a nonclassification with thresholds of 0.8 and 0.2
(Note: Both methods give good classification results.)
[P 6-25

Wm Calnodae ged ot aeb Sa et 4 Db e e A st bt aAd Aated |

>
<
¢ ¢
Table 6.17
: Classification Results for Class 1 Set 3 Range Training Data
- (Note: Distances are calculated from the center of the class 1 training data.)
®
File Name Distance Neural Net
Node 1 Node 2
Training Class 1
y R3197tr_tmp_3195.dat 0.1548%* 0.0973 0.9027%*
o R3190_p165_tmp_3195.dat 0.1565* 0.9799 0.0193
! R3190_p221_tmp_3195.dat 0.1748* 0.0973 0.9028%*
R3074_tmp_3083.dat 0.1222 0.9837 0.0156
4 R3051_tmp_3090.dat 0.1268 0.9764 0.0228
. R3042_tmp_3083.dat 0.1117 0.9988 0.0012
R3090_r40_tmp_3028.dat 0.1822% 0.9970 0.0030
R3090_tmp_3028.dat 0.1602* 0.9956 0.0043
® R3033_r40_tmp_3083.dat 0.1444* 0.9837 0.0156
~ R3033_r10_tmp_3083.dat 0.1278 0.9837 0.0156
. R3033_tmp_3083.dat 0.1321 0.9837 0.0156
J R3028_tmp_3028.dat 0.2069* 0.9970 0.0030
R3028_r40_tmp_3028.dat 0.0887 0.9970 0.0030
R3066_tmp_3066.dat 0.2057* 0.9970 0.0030
A R3066_r40_tmp_3066.dat 0.1121 0.9968 0.0032
p R3074_tmp_3074.dat 0.1187 0.9970 0.0030
R3074_r40_tmp_3074.dat 0.0625 0.9963 0.0037
R3088_tmp_3088.dat 0.1978* 0.9970 0.0030
R3088_r40_tmp_3088.dat 0.0842 0.9970 0.0030
. R3083_tmp_3083.dat 0.1157 0.9970 0.0030
4 o R3083_r40_tmp_3083.dat 0.0605 0.9970 0.0030
- R3195_tmp_3195.dat 0.0861 0.9970 0.0030
X R3195_r40_tmp_3195.dat 0.0679 0.9969 0.0031
R3042_tmp_3042.dat 0.2021* 0.9970 0.0030
R3042_r40_tmp_3042.dat 0.1114 0.9970 0.0030
® * Represents a misclassification at a distance threshold of 0.135
** Represents a neural net misclassification
(Note: The two files that could not be trained with the neural net
. have a large scale difference between template and target.)
, €
9
‘ .
o S
&
K
', 6-26

Mo e Ce NN T LAY ST XY . - » 0 ; L AN ¢ "] : n
‘ - g k) TSN OOOBOLC N SR MO D U RUSHORCGOHOU XN
’.,l».‘l‘.,_l Q,Ie., ';f-‘ﬁ}‘- 3‘-’-‘_&_., ,h.ﬁ ?Q‘ BN .l‘ -'2‘- f-b‘.fi l?m,l,o!"@!k’»,&?} e .l’., :'Q".‘j e 5?.!.4!‘». LEIEEL N v I?: &) l?v,l‘:‘.(a_a,"y,l')s. 3. SIS) 6’-.9‘* ’l?“'r'&lgyf

¢
v
8 Table 6.18
0 Classification Results for Class 2 Set 3 Range Training Data
N (Note: Distances are calculated from the center of the class 1 training data.)
) ®
File Name Distance Neural Net
o Node 1 Node 2
- Training Class 2
N R3197TR _tmp_3028.dat 0.1784 0.0975 0.9025
L & R3197TR_tmp_3083.dat 0.1803 0.0972 0.9028
¢ R3190_p221_tmp_3090.dat 0.1048* 0.0976 0.9024
R R3190_p221_tmp_3083.dat 0.1200* 0.0974 0.9027
S R3190_p165_tmp_3090.dat 0.1062* 0.0977 0.9024
s R3190_p165_tmp_3083.dat 0.1249* 0.0973 0.9027
\ R3051_tmp_3195.dat 0.1366 0.0973 0.9027
K o R3051_tmp_3083.dat 0.1599 0.0973 0.9027
R3090_tmp_3083.dat 0.1343* 0.0974 0.9026
2 R3090_tmp_3195.dat 0.1411* 0.0973 0.9027
B R3033_tmp_3028.dat 0.1241* 0.0974 0.9027
- R3033_tmp_3195.dat 0.1566 0.0974 0.9027
. R3028_r10_tmp_3195.dat 0.1365 0.0973 0.9027
i R3066_tmp_3195.dat 0.1596 0.0974 0.9027
¢ R3066_tmp_3083.dat 0.1688 0.0972 0.9028
R3074_tmp_3195.dat 0.1413 0.0985 0.9015
> R3074_tmp_3090.dat 0.1060* 0.0975 0.9025
P R3088_tmp_3195.dat 0.1597 0.0973 0.9027
Ry R3088_tmp_3083.dat 0.1383 0.1000 0.9000
R R3083_r10_tmp_3195.dat 0.1427 0.0974 0.9027
{ 4 R3083_r10_tmp_3028.dat 0.1439 0.0979 0.9022
. R3195_r10_tmp_3028.dat 0.1188* 0.0974 0.9027
"~ R3042_tmp_3195.dat 0.1586 0.0972 0.9028
- R3042 tmp_3090.dat 0.1535 0.0974 0.9027
:j * Represents a misclassification at a threshold of 0.135
X3 (Note: The ability of a neural net to train and seperate very poorly distributed
. data is outstanding. The key to classifying test data, is to insure the training
‘o data is a good representation of gll the data.)
>,
‘"
B
“
-
" o
i
2
7
o
‘ . 6-27
»
N . L .r‘-‘ L g {‘J

Ve

\ O AW W0 400 SOOI AR T Ly D T R
".' O X '.':0 Lt M i"‘&'“t"‘.l.'.t"..‘.' [} “.l"’J“‘,ih.?n‘l"‘.v“‘.."‘ﬂ"‘t"‘_i.‘.. J"’n l‘n .'l‘- W ASE LTS 0..0‘ u ,. WL O LU AN P &' ALK A .\;

5
Table 6.19
Classification Results for Class 1 Set 3 Range Test Data
(Note: Distances are calculated from the center of the class 1 training data.)
L
File Name Distance Neural Net
Node 1 Node 2
Test Class 1
R3190_tmp_3083.dat 0.1441* 0.0974 0.9026*
R3088_tmp_3090.dat 0.1372* 0.9837 0.0155
L R3035_tmp_3083.dat 0.1256 0.9829 0.0164
R3066_tmp_3090.dat 0.1088 0.0972 0.9028*
R3190_p47_tmp_3195.dat 0.1629* 0.1032 0.8966*
R3197TR_rd40_tmp_3195.dat 0.1582* 0.0973 0.9027*
R3195TANK_tmp_3083.dat 0.1668* 0.9770 0.0220
R3195TANK_r40_tmp_3083.dat 0.1632* 0.0992 0.9008*
| R3090_r30_tmp_3028.dat 0.1443* 0.6513** 0.3472
R3090_r20_tmp_3028.dat 0.1327 0.0977 0.9024*
R3090_r10_tmp_3028.dat 0.1780* 0.0974 0.9026*
R3033_r30_tmp_3083.dat 0.1374% 0.9837 0.0156
R35033_r20_tmp_3083.dat 0.1288 0.9837 0.0156
R3028_r10_tmp_3028.dat 0.0829 0.9970 0.0030
L R3028_r20_tmp_3028.dat 0.0901 0.9970 0.0030
R3028_r30_tmp_3028.dat 0.1026 0.9970 0.0030
R3066_r10_tmp_3066.dat 0.1092 0.9970 0.0030
R3066_r20_tmp_3066.dat 0.1428* 0.9970 0.0030
R3066_r30_tmp_3066.dat 0.0980 0.9970 0.0030
R3074_r10_tmp_3074.dat 0.0451 0.9169 0.0823
o R3074_r20_tmp_3074.dat 0.0541 0.9963 0.0036
R3074_r30_tmp_3074.dat 0.0716 0.9851 0.0147
R3088_r10_tmp_3088.dat 0.1014 0.9970 0.0030
R3088_r20_tmp_3088.dat 0.0942 0.9970 0.0030
R3088_r30_tmp_3088.dat 0.1059 0.9970 0.0030
R3083_r10_tmp_3083.dat 0.0580 0.9970 0.0030
< R3083_r20_tmp_3083.dat 0.0609 0.9970 0.0030
R3083_r30_tmp_3083.dat 0.0614 0.9970 0.0030
R3195_r10_tmp_3195.dat 0.0689 0.9924 0.0075
R3195_r20_tmp_3195.dat 0.0688 0.9967 0.0032
R3195_r30_tmp_3195.dat 0.0664 0.9969 0.0030
R3042_r10_tmp_3042.dat 0.0956 0.9970 0.0030
. R3042_r20_tmp_3042.dat 0.0774 0.9970 0.0030
R3042_r30_tmp_3042.dat 0.1150 0.9969 0.0030
* Represents a misclassification
** Represents a nonclassification
(Note: All the neural net misclassifications are in the same target-
" different view autocorrelation class. See note below Table 6.18.)
L
) 6-28
¢

P R T T W R T R R T Wiy MM St des i skt e A |

<
Table 6.20
Classification Results for Class 2 Set 3 Range Test Data
(Note: Distances are calculated from the center of the class 1 training data.)
o
File Name Distance Neural Net
Node 1 Node 2
Test Class 2
R319STANK _tmp_3028.dat 0.0866* 0.9973* 0.0027
R319STANK _tmp_3195.dat 0.1376 0.0974 0.9027
® R3197TR_tmp_3090.dat 0.1771 0.0973 0.9028
R3197TR_tmp_3083.dat 0.1803 0.0972 0.9028
R3190_p47_tmp_3090.dat 0.1067* 0.1071 0.8929
R3190_p47_tmp_3083.dat 0.1028* 0.0974 0.9027
R3190_T227_tmp_3090.dat 0.0825* 0.0976 0.9025
R3190_T227_tmp_3195.dat 0.1385 0.0973 0.9027
® R3035_tmp_3090.dat 0.0927* 0.0974 0.9026
R3035_tmp_3195.dat 0.1386 0.0973 0.9027
R3090_r10_tmp_3083.dat 0.1278* 0.0974 0.9027
R3090_r10_tmp_3195.dat 0.1411 0.1005 0.8994
R3090_r20_tmp_3083.dat 0.1206* 0.9836* 0.0157
R3090_r30_tmp_3083.dat 0.1247* 0.1542 0.8443
L R3090_r20_tmp_3195.dat 0.1420 0.1011 0.8988
R3090_r30_tmp_3195.dat 0.1430 0.9837* 0.0156
R3033_r20_tmp_3028.dat 0.1413 0.9837* 0.0156
R3033_r30_tmp_3028.dat 0.1020* 0.0975 0.9026
R3033_r20_tmp_3195.dat 0.1618 0.9795* 0.0197
R3033_r30_tmp_3195.dat 0.1491 0.0972 0.9028
o R3028_r40_tmp_3195.dat 0.1678 0.0975 0.9025
R3066_r40_tmp_3195.dat 0.1597 0.9558* 0.0423
R3066_r20_tmp_3195.dat 0.1553 0.0975 0.9025
R3066_r40_tmp_3083.dat 0.1674 0.0977 0.9023
R3066_r20_tmp_3083.dat 0.1228* 0.1699 0.8284
R3074_r40_tmp_3195.dat 0.1649 0.0973 0.9027
@ R3074_r20_tmp_3195.dat 0.1485 0.0973 0.9027
R3074_r40_tmp_3090.dat 0.1320* 0.0974 0.9027
R3074_r20_tmp_3090.dat 0.0916* 0.0974 0.9027
R3088_r20_tmp_3195.dat 0.1596 0.9837* 0.0156
R3088_r40_tmp_3195.dat 0.1685 0.9640* 0.0346
R3088_r20_tmp_3083.dat 0.1150* 0.0978 0.9022
¢ R3088_r40_tmp_3083.dat 0.1031* 0.0974 0.9027
R3042_r20_tmp_3090.dat 0.1753 0.0974 0.9027
R3042_r40_tmp_3090.dat 0.1601 0.0973 0.9027
R3042_r20_tmp_3195.dat 0.1646 0.0972 0.9028
R3042_r40_tmp_3195.dat 0.1569 0.1091 0.8907
R3083_r20_tmp_3195.dat 0.1481 0.0975 0.9026
G R3083_r40_tmp_3195.dat 0.1473 0.0974 0.9027
R3083_r20_tmp_3028.dat 0.1858 0.9994* 0.0006
R3083_r40_tmp_3028.dat 0.1414 0.0995 0.9005
R3195 r40 tmp 3028.dat 0.1581 0.0976 0.9025
* Represents a misclassification
@
6-29

il

9
Table 6.21
Classification Results for Class 1 Set 3 Binary Training Data
(Note: Distances are calculated from the center of the class 1 training data.)
®
File Name Distance Neural Net
Node 1 Node 2
Training Class 1
R3197tr_btmp_3195.dat 0.1421* 0.0885 0.9113**
) R3190_p165_btmp_3195.dat 0.1540* 0.9998 0.0002
hd R3190_p221_btmp_3195.dat 0.1503* 0.0887 0.9111%*
R3074_btmp_3083.dat 0.1229 0.9997 0.0002
R3051_btmp_3090.dat 0.0955 0.9964 0.0029
R3042_btmp_3083.dat 0.0927 0.9944 0.0047
R3090_r40_btmp_3028.dat 0.1132 0.9888 0.0113
R3090_btmp_3028.dat 0.0948 0.9959 0.0034
® R3033_r40_btmp_3083.dat 0.1345* 0.9964 0.0042
R3033_r10_btmp_3083.dat 0.1270* 0.9822 0.0198 :
R3033_btmp_3083.dat 0.1184 0.9721 0.0314 |
R3028_btmp_3028.dat 0.2383* 0.9941 0.0049 :
R3028_r40_btmp_3028.dat 0.1242 0.9939 0.0051
. R3066_btmp_3066.dat 0.1831* 0.9939 0.0051
- R3066_r40_btmp_3066.dat 0.0706 0.9938 0.0052
R3074_btmp_3074.dat 0.1028 0.9924 0.0061
R3074_r40_btmp_3074.dat 0.0453 0.9937 0.0052
R3088_btmp_3088.dat 0.1597* 0.9908 0.0081
R3088_r40_btmp_3088.dat 0.0696 0.9948 0.0044
. R3083_btmp_3083.dat 0.1036 0.9995 0.0004
L4 R3083_r40_btmp_3083.dat 0.0510 0.9966 0.0028
R3195_btmp_3195.dat 0.0938 0.9985 0.0012
R3195_r40_btmp_3195.dat 0.0668 0.9963 0.0030
R3042_btmp_3042.dat 0.1554* 0.9939 0.0051
R3042 _r40_btmp 3042.dat 0.0635 0.9939 0.0051
) * Represents a misclassification at a threshold of 0.125
** Represents a neural net misclassification
(Note: The two files that could not be trained with the neural net
have a large scale difference between template and target. Also, these
are the same two files that could not be trained using the range data.)
"L
e
@

6-30

.

AN Y { : R X0 { 3 i
- x 0 00N OO0 1 OO OO O MO A o O BN
2 O n!i'."!,q'&aqff’gft;-ﬁf;’ ;“’:!"t" , - ?«’)!.;'_Q?3"“,_ls.y"l_.f'!.‘_.-“!v"."g’l ‘t-’aﬁl\!“_':"!,"” '5‘,!.-.-!‘}}f.’i“'.“?“_.’h‘

RATUR A

Table 6.22
Classification Results for Class 2 Set 3 Binary Training Data
(Note: Distances are calculated from the center of the class 1 training data.)

File Name Distance Neural Net

Node 1 Node 2
Training Class 2
R3197TR_btmp_3028.dat 0.1616 0.0887 09111
R3197TR _btmp_3083.dat 0.1624 0.0887 09111
R3190_p221_btmp_3090.dat 0.1326 0.0777 0.9223
R3190_p221_btmp_3083.dat 0.1117* 0.0866 0.9133
R3190_p165_btmp_3090.dat 0.0827* 0.0887 09111
R3190_p165_btmp_3083.dat 0.1254 0.0051 0.9952
R3051_btmp_3195.dat 0.1514 0.0885 0.9113
R3051_btmp_3083.dat 0.1289 0.0887 09111
R3090_btmp_3083.dat 0.1106* 0.0879 0.9119
R3090_btmp_3195.dat 0.1268 0.0858 0.9141
R3033_btmp_3028.dat 0.0712+* 0.0365 0.9613
R3033_btmp_3195.dat 0.1410 0.0892 0.9106
R3028_R10_btmp_3195.dat 0.1278 0.0964 0.9037
R3066_btmp_3195.dat 0.1398 0.0887 09111
R3066_btmp_3083.dat 0.1494 0.0892 09106
R3074_btmp_3195.dat 0.1398 0.0887 09111
R3074_btmp_3090.dat 0.0838* 0.0039 0.9963
R3088_btmp_3195.dat 0.1421 0.0886 0.9112
R3088_btmp_3083.dat 0.1097* 0.0428 0.9557
R3083_r10_btmp_3195.dat 0.1343 0.0887 0.9111
R3083_r10_btmp_3028.dat 0.1133* 0.0050 0.9952
R3195_r10_btmp_3028.dat 0.0942% 0.0039 0.9963
R3042_btmp_3195.dat 0.1352 0.0909 0.9091
R3042_btmp_3090.dat 0.1167* 0.0063 0.9940

Wttt

* Represents a misclassification at a threshold of 0.125
(Note: The ability of a neural net to train and seperate very poorly distributed
data is outstanding. The key to classifying test data, is to insure the training
data is a good representation of all the data. Same baisc results as with the range data.)

042G e ol 0 Y n, TR
't.c"‘v' _:‘l!n Ly ‘n'l,o) l.n'_"n"—!v'lel'l .!"’,:ETEI"," W)

6-31

. ‘.3
4 n‘:?o’j. n‘:"l“u?a OVM A Sy

WA

NSO A

=

.......

Table 6.23
Classification Results for Class 1 Sct 3 Binary Test Data
(Note: Distances are calculated from the center of the class 1 training data.)

File Name Distance Neural Net

Node 1 Node 2
Test Class 1
R3190_btmp_3083.dat 0.1326%* 0.0884 0.9114*
R3088_btmp_3090.dat 0.1392* 0.0889 0.9109*
R3035_btmp_3083.dat 0.1190 0.9994 0.0005
R3066_btmp_3090.dat 0.0774 0.9983 0.0014
R3190_p47_btmp_3195.dat 0.1559+* 0.0886 0.9112%
R3197TR_r40_btmp_3195.dat 0.1465* 0.0887 09111*
R3195TANK_btmp_3083.dat 0.1013 0.944! 0.0617
R3195TANK_r40_btmp_3083.dat 0.1441* 0.9998 0.0002
R3090_r30_btmp_3028.dat 0.1093 0.9951 0.0041
R3090_r20_btmp_3028.dat 0.1001 0.8536 0.1612
R3090_r10_btmp_3028.dat 0.0897 0.9981 0.0016
R3033_r30_btmp_3083.dat 0.1247 0.0813 09187%
R3033_r20_btmp_3083.dat 0.1287* 0.0990 0.9013*
R3028_r10_btmp_3028.dat 0.1095 0.9939 0.0051
R3028_r20_btmp_3028.dat 0.1174 0.9916 0.0067
R3028_r30_btmp_3028.dat 0.0987 0.9927 0.0059
R3066_r10_btmp_3066.dat 0.0635 0.9937 0.0052
R3066_r20_btmp_3066.dat 0.1049 0.9939 0.0051
R3066_r30_btmp_3066.dat 0.1076 0.9939 0.0051
R3074_r10_btmp_3074.dat 0.0542 0.0192 0.9813*
R3074_r20_btmp_3074.dat 0.0387 0.9911 0.0074
R3074_r30_btmp_3074.dat 0.0540 0.9763 0.0216
R3088_r10_btmp_3088.dat 0.0777 0.5200%** 0.4432
R3088_r20_btmp_3088.dat 0.0748 0.9939 0.0051
R3088_r30_btmp_3088.dat 0.0769 0.9939 0.0051
R3083_r10_btmp_3083.dat 0.0484 0.9975 0.0021
R3083_r20_btmp_3083.dat 0.0485 0.9955 0.0037
R3083_r30_btmp_3083.dat 0.0504 0.9954 0.0038
R3195_r10_btmp_3195.dat 0.0641 0.9971 0.0024
R3195_r20_btmp_3195.dat 0.0667 0.9978 0.0018
R3195_r30_btmp_3195.dat 0.0658 0.9984 0.0013
R3042_r10_btmp_3042.dat 0.0553 0.9730 0.0240
R3042_r20_btmp_3042.dat 0.0629 0.9902 0.0077
R3042 r30_btmp_3042.dat 0.0551 0.9933 0.0055

* Represents a misclassification
** Represents a nonclassification

(Note: All the neural net misclassifications are in the same target-different view

By Ry ~._I Lt KN LM L0)lul’-[

"y

LA

6-32

-
i

ACAPA LAy A R 1) ('
DA O MO L SO SISO DEINOA e DY

autocorrelation class. See note below Table 6.22. Same basic results as with the range data.)

X
DU

“!‘?‘ K

()%)

L

.....

Table 6.24
Classification Results for Class 2 Set 3 Binary Test Data
(Note: Distances are calculated from the center of the class 1 training data.)

File Name Distance Neural Net
Node 1 Node 2
Test Class 2
R319STANK_btmp_3028.dat 0.1557 0.0887 09111
~ R3195TANK_btmp_3195.dat 0.1213* 0.0076 0.9926
¢ R3197TR_btmp_3090.dat 0.1632 0.0887 0.9111
‘ R3197TR_btmp_3083.dat 0.1624 0.0887 09111
R3190_p47_btmp_3090.dat 0.1281 0.8735* 0.1453
R3190_p47_btmp_3083.dat C.0826* 0.9697* 0.0290
R3190_T227_btmp_3090.dat 0.0984* 0.0121 0.9882
R3190_T227_btmp_3195.dat 0.1449 0.0886 09112
® R3035_btmp_3090.dat 0.1370 0.0039 0.9963
R3035_btmp_3195.dat 0.1320 0.0174 0.9831
K R3090_r10_btmp_3083.dat 0.1294 0.9850* 0.0192
) R3090_r10_btmp_3195.dat 0.1188* 0.1523 0.8483
) R3090_r20_btmp_3083.dat 0.1215* 0.0882 09116
. R3090_r30_btmp_3083.dat 0.1072* 0.1105 0.8900
< R3090_r20_btmp_3195.dat 0.1241* 0.0988 0.9014
. R3090_r30_btmp_3195.dat 0.1169* 0.0883 09115
R3033_r20_btmp_3028.dat 0.1545 0.0039 0.9963
R3033_r30_btmp_3028.dat 0.0863* 0.9735* 0.0221
) R3033_r20_bump_3195.dat 0.1323 0.0883 09115
! R3033_r30_btmp_3195.dat 0.1528 0.0887 09111
X R3028_r40_btmp_3195.dat 0.1440 0.0887 09111
R3066_r40_bump_3195.dat 0.1498 0.0887 09111
R3066_r20_btmp_3195.dat 0.1472 0.0887 09111
; R3066_r40_btmp_3083.dat 0.1356 0.0887 09111
: R3066_r20_btmp_3083.dat 0.1060* 0.9968* 0.0037
.. R3074_r40_btmp_3195.dat 0.1426 0.0887 09111
(\) R3074_r20_btmp_3195.dat 0.1228* 0.1061 0.8943
R3074_r40_bump_3090.dat 0.1202* 0.0042 0.9960
R3074_r20_btmp_3090.dat 0.1245+* 0.0887 09111
R3088_r20_btmp_3195.dat 0.1424 0.0887 09111
{ R3088_r40_btmp_3195.dat 0.1406 0.0886 09112
* R3088_r20_btmp_3083.dat 0.1071* 0.9790* 0.0213
IN R3088_r40_btmp_3083.dat 0.0912* 0.9847* 0.0145
R3042_r20_btmp_3090.dat 0.0934* 0.0880 09118
R3042_r40_btmp_3090.dat 0.0914* 0.0131 0.9869
R3042_r20_btmp_3195.dat 0.1378 0.0877 0.9121
R3042_r40_bimp_3195.dat 0.1336 0.0883 09115
R3083_r20_btmp_3195.dat 0.1421 0.0909 0.9091
s R3083_r40_btmp_3195.dat 0.1423 0.0887 09111
‘ R3083_r20_btmp_3028.dat 0.1216* 0.0887 09111
R3083_r40_btmp_3028.dat 0.1175* 0.0885 09113
’ R3195 _r40 btmp_ 3028.dat 0.1067* 04113 0.6000**
! * Represents a misclassification
¢ ** Represents a nonclassification
6-33
)

................

B oy A Tl o i T A -,

AP SNODOO

N K
PR A S 3

- . "
‘l MR LR I

¢

It e VR)

VII. Conclusions and Recommendations

7.1 Conclusions

This thesis examined methods of classifying and locating both segmented and non-
segmented targets using laser range and binary data. The classification methods
included applying both standard distance measurements and a neural network to the
peak of a PSRI space correlation. The experimental results on these methods demon-
strated that a trainable neural network has distinci advantages over distance measure-
ments, both in absolute classification rates and in the figure of merit area. The study with
the multilayer perceptron also demonstrated that these are not magical devices. Care
must be taken to provide the network with an adequate representation of the data if
satisfactory classification results are to be obtained. In a real world situation, many
more training files would be needed to ensure proper classification. However, the suc-
cessful results demonstrated in this thesis indicate that this may be a classification alter-

native worth pursuing.

This study indicates that with the chosen features and methods of classification, the
relative range information did not provide any extra useful information about the target.
Again, as stated in chapter VI, this does not mean that the information isn’t available,
only that the chosen features and classification method didn’t make use of this informa-
tion. It could also mean that the extra information wasn’t required. The classification
rates in sets one and two using the neural network were near 100% for both binary and
range data. Extra information can’t be deemed useful if it isn’t needed. In set three, the
classification rate was much less, particularly with the same class - different view auto-
correlations. However, this was most likely due to the limited number of training files
of this type used. The success achieved with the set three training files gives hope that a

larger training set could yield better classification results.

The other area explored was that of the space domain Goodman - Schwarz correla-

tion. The theory of this correlation indicated that through a process of local normaliza-

7-1

a3

O YT "~) p O, > j NN A RTON L T > e e REES Y rde Bty
f“,n. !'E‘_Q.‘!QJ .‘!‘ . th Do) ‘!?'!t. ‘.fif,’.ﬂ, Al ARG J'él.c!l-,l'-q ;!t" b < ARZLHRELN] (R LT AN AN

5!

o

O

€

LY ol

tion, the peak in the correlation plane will correspond to where the input scene best

numerically matched the template.

The test case for this experiment worked well with the peak in the correlation plane
properly locating the target with two of the three templates tested. It was determined
that for this test case, a threshold of 98% of the maximum could be used as a threshold
for the purpose of classification. However, a more extensive study is needed to deter-
mine some type of universal threshold. A multistage process was used to greatly reduce
the computation time required. This multistage process also allowed for locating par-
tally occluded targets. This process was found to work well on the larger targets but
not on the small target. Again, more study is needed to determine size limitations. The
Goodman - Schwarz correlation could be set up in a parallel architecture just as the
basic correlation could, but, it would be a massive undertaking. The highlight of the
Goodman - Schwarz correlation is that it works through a local energy normalization
operation. Local normalization is essential in locating a target with this type of input

data where large amounts of noise are distributed throughout the scene.

7.2 Recommendations

Many possibilities exist for further study. A larger number of correlations could be
obtained to further test the application with neural networks. A way to create scaled
versions of range images would be useful for creating training files. A determination
needs to be made as to how scale and rotation invariant this algorithm is with respect to
classification. This researcher strongly believes that the PSRI space is much more rota-
tion invariant than scale invariant with respect to classification. However, this thesis is
certainly not presented as a proof of this statement. A frequency filter was used when
mapping the magnitude Fourier transform to the (Ln r , 8) coordinate system. More
study is needed to determine an optimum filter. As a side note, if many more PSRI
space correlations are to be performed using the Kobel and Martin Executive program

[1:Vol II], one of the first items that should be accomplished is to modify the way the

7-2

W

Lol sl e il

data is stored. The present program requires too much memory. Certainly one possibil-

ity is too extract the peak without saving the correlation plane.

The files used with the neural network contained raw data taken from the correla-

tion peaks. During the network operations, each file was normalized prior to processing

by the net. In the training phase, a single file is then read and normalized each time it is
used. This is extremely inefficient and takes approximately 30 minutes of cpu time, on
a Micro Vax, for 1000 training file iterations using 100 nodes in the first hidden layer
znd 3 nodes in the second hidden layer. Once the desired form the data is known, files
should be created that contain only this data before being processed by the neural net-
work. This thesis only explored one of a large number of neural networks. Other types

may be explored and may be found to yield superior results.

Mike Mayo, a fellow AFIT student, has demonstrated the optical transformation of
a template into the PSRI feature space and the subsequent correlation of the PSRI spaces
[16]. Therefore, a very exciting problem that could be immediately attacked would be
to implement a hybrid optical/digital electronic system that could perform classification
with a neural network using these correlation peaks. Because of time constraints, the

optical transformation is essential in a real world application.

7-3

Appendix A. Neural Networks

The recent rediscovery of neural networks is due to new net topologies and algo-
rithms. Also, the extensive calculations required for speech and pattern recognition
have a great advantage in the parallel architecture of neural networks. The neural net-
work used in this study was a multilayer perceptron which makes use of a backward
error propagation routine. A complete description of this network can be found in a
very good tutorial format article by Lippmann [22]. Conceptually, a multilayer percep-
tron is constructed as in fig. A.1. The input to the network is the set of features that are
to be used for classification and the output becomes the class in which the features are
grouped. Connection weights and node thresholds are initially chosen to be small ran-
dom numbers and are updated during the training phase using the backward error propa-

gation routine.

During the training phase, the net processes many examples of the classes that are
desired to be classified. The weights and thresholds of the net are forming decision
regions in an N dimensional space where N is the number of input features. The
weights and internal thresholds are updated with the backward error propagation routine
that updates values based on the actual values as compared to the desired output values.
The backward error propagation routine makes the decision regions better accommodate
the input data. Once the training is complete, the hope is that new data from the classes
will also fall into the proper decision region, therefore being classified. This is very
simplified and much more detail can be found in Lippmann [22]. There are, however, a

few itemns that need to be stressed from or added to Lippmann.

First, the selection of the number of internal nodes. Lippmann states that in the
second hidden layer, each node will identify a decision region [22:16]. Therefore, if
there are only two decision regions, the output node can do the identification and there is
no need for the second hidden layer. If the net is presented with a 2 class problem and

cach class is separated into 3 regions, then there needs to be at least 6 nodes in the

A-1

......... - - - . .’- 'J".".".'.f -{{ ‘-*vs*.'.'p’!'p ~‘ s*p‘_n » "‘1".{\:*)’(‘\.2".\ N _*.;’\ Y '\.._\
, A »

L% ’ L b - ;
A v'g l.l,n.- ".l. ------ T 0 B RS, D‘.'* A Wil N

. AT e Wh

SRR
OO) 0 \J
T T T TN Y -‘!’“, I ASCL SO

halh S "l Ak Bk Sl el el Thasllh ‘Thadh * Aol ol Bl * S g1

N
.t OUTPUT (CLASSES)
)
d ®
THIRD
" LAYER
(“’u
j ©
¥ SECOND
LAYER
4 W
i ik
)
® LAVER
L
. W
1)
i
%
- INPUT (FEATURES)
§
g @
z
- Fig. A.1 Conceptual Diagram of a Multilayer Perceptron
second hidden layer. Don’t make the "the more nodes the better” mistake. At most,
j® there need only be the same amount of regions as training examples. For the first hidden
‘ layer, Lippmann states that one node is needed for every boundary plane of each deci-
E sion region. The boundary planes he is speaking of are really N-1 dimensional units.
¢ He therefore states the need for at least three times as many nodes in the first hidden
: layer as in the second hidden layer [22:16]. This is true if the data has been normalized
so as to fall onto the surface of a hypersphere. If the data occupies the volume of the
£ hypersphere, and it’s necessary to completely enclose the decision region, there needs to
f' be at least N+1 number of nodes for every region. For the case where there is no insight
N as to the distribution of the decision region, the following sequence is suggested:
© 1) Stant training with two nodes in the second hidden layer and 2*(N+1) nodes in the
. first hidden layer.
: ‘ A-2
G]

e o D, v Ayt (MM P TN o A ; (A AT ANTAN TV T
TN Xl ‘-'.‘."'.0!‘.‘?’.",‘ e " l':l‘:'l‘a‘l'n‘ '-a:‘"-.-‘v-'u',.n‘fc'.rfl’ft*'ol".!l’:""w."-.*s»,"r.‘.'m"r-”' i

. 1%.0% .

----- Ny —" 1

2) Gradually increase the number of second hidden layer nodes (K) and first hidden
layer nodes K*(N+1) until training is successful.

o 3) Hold the second hidden layer at the node number where successful training was
achieved. Decrease the number of first hidden layer nodes to determine number
required for separation.

This process was found to yield good groupings of the decision regions. It is possi-
ble that data could be grouped in a volume such that more than K*(N+1) nodes are
required in the first hidden layer particularly when working in a lower dimensional
feature space. In this case, step 2 will never be successful. Therefore, it may be neces-
sary to find where step 2 was most successful and then start increasing the number of

second hidden layer nodes.

It would be ideal if there was an infinite set of data to train the net with. The net
could train on all possible views of a object and when training was successful, success-
ful classification with any possible test data would be assured. With pattern recognition,
the game is to train with a finite set of training data and then test with different data not
included in the training set. The training sets are presented to the net in a random order
so that the net can make as many training runs as needed. A problem with this is that
the training set may not be a good representation of all the data. There have been
attempts to quantify the required number of training sets per class needed to properly
train the net, but this is very application dependent. For example, four training sets for a
class would be enough if all the test data for that class fell within the region that would

be bounded by the four training examples.

It can sometimes be hard to determine when to stop training and say that the net is
not going to separate. The net is being trained to drive the correct output nodes to a
value of one and drive the incorrect output nodes to zero. When a particular training file
stabilizes at output values between 0.3 and 0.7, the chosen number of nodes is not going
to separate the data. If the values are in this region but still flopping around a great deal,

the net needs to train for a longer period. This also gets into a figure of merit question.

A-3

s

H) ‘. . .y A " . P "X . WK v B X
i ! 5 JOUCEIA N IIOUDONU N A,
MR Kon ,n.!,o.‘?t.‘.'.l,t)'r‘ﬁ,:..x‘?-f"-,-. SR Sl SR B SO A TN

A AT,

If the input data is classified based on the maximum output node, when can the decision
of the net be trusted? In Lippmann’s use of a multilayer perceptron with a sigmoidal
type output rule, he used values of > 0.9 to indicate a definite true and values of < 0.1 to
indicate a definite false [22:17]. This, of coarse, is fairly arbitrary and could be changed
depending on the application.

Another factor that was critical to the successful net training was the selection of
the initial weights and thresholds. At first these were all chosen from a random distribu-
tion centered at zero with a radius of 0.1. The resulting net failed miserably. When the
radius was increased to 0.5, the net could successfully be trained. No exhaustive effort
was made to logically explain this effect and it is offered only to possibly help someone
else working in a similar area. It could have a sound mathematical basis or may be due
to computer errors involved with many multiplications, additions, and subtractions with

small numbers.

A final step is the preprocessing of the input data before sending it into the net.
The inputs to the net were the 49 normalized components around the peak of the PSRI
feature space correlation. Even though the resulting 49 dimensional hypersphere has an
enormous surface area, the decision regions were greatly restricted due to using only

positive inputs. With only positive inputs, the surface area is restricted to only one sec-

tor or E‘I‘T of the possible area. Also, since all correlations have generally similar

shapes around the peak, with a peak and a roll off from the peak, it’s reasonable to
assume that all the data would cluster into a relatively small area of this one sector. It
appears that these groupings required too fine of a detail for the net to adequately
separate. Therefore, the normalized input data was preprocessed to spread the data to
fully occupy a unit hypercube. This greatly increases the separation between points and
leads to much improved classification. The method is to first search all the components
of the training data and find the minimum and maximum value for each component.

The minimum value for each component is now set to zero and the maximum value is

A-4

set to one. The rest of the data is then spread in proportion to the original spread of the
data [23). This spreading operation did not yield better groupings with respect to dis-
tance measurements, but, it allowed for regions to be constructed using the neural net-

work.

6 A-5

" l‘d

1@l
[¢

au@uuk%

Appendix B. Computer Programs

The following is a listing of the computer programs that were written in support of
this thesis effort. They include a complete listing for the multilayer perceptron, the peak
extractor used to find and extract the peak of the PSRI space correlation, and a listing for
the Goodman - Schwarz space domain correlation. These programs are all written in the

VAX ADA programing language.

B-1

-_ I EEEEEEREE A REREEANESRERRER R ERYR)

(- * PROGRAM TITLE : MP U
-—— - *

- * AUTHORS : LT STEVE TROXEL ¢

® -- . CAPT DENNIS RUCK *
- IR EE R R R R E R EER SRR R EE SRR EREEREY

—_ [R R A R R R R R R R R R R A R AR RS R A R R R R R R R R R R R A R R R AR ERE S N]

- * DISCRIPTION : This program implements a multilayer
perceptron to perform classification.

- *
L L]
* INPUTS : NUMBER OF NODES IN EACH LAYER ,
. NUMBER OF INPUTS .
. NUMBER Of CLASSES .
. GAIN, GAIN DECAY AND MOMENTUM VALUES *
-— s COST THRESHOLD .
. TRAINING AND TEST FILES .
* »
* OUTPUT : CLASSIFICATION VALUES FOR BOTH THE .
. TRAINING AND TEST FILES .
. ENDING WEIGHTS AND THRESHOLDS .
L] *

I B A R R A R R N R R A R R R R R R R R R R R R R R R R R R R A R R R R R R SRR R RN

with text_io; use text io;

with integer_text io; use integer text io;

with float text io; use float_text io;

with vector operations; use vector operations;

with porcop?ron_suppott: use perceptron support;

with math lib extension: use math lib extension;
(; with tlon?_-a?h_lib: use flolf_ll;h_lib;

with system;
procedure MP is

type layer (inputs : positive; outputs : positive) is

record
X : vector (1..inputs); -- input to layer
® (W : matrix (1l..inputs, l..outputs); -- current weights
W old : matrix (1..inputs, 1..outputs); -- previous weights
Xp : vector (1..outputs); -- input to a node
thets : vector (l..outputs); —-- current node threshold
theta old : vector (l..outputs); -~ previous node threshold
Y - : vector (l..outputs); -- output of layer
del : vector (1l..outputs); -~ relative change in
end record; --~ weights and thresholds
(™) N t integer: -~ number of features
K integer; -~ nodes in Layer 1
L : integer; -- nodes in Layer 2
M : integer; —- number of classes
num : integer; -- number of training files
file list : string(1..80); -- name of file containing list
- -~ of files
e
cost : PLOAT;
total cost ¢ FLOAT;

cost_?hroshold : FLOAT;
output_interval: natural;

count : natural;

¢
center : constant := 0.0;
width : float;
seed : system.unsigned_longword := [;
Int file : Text jo.file_type;
training_count : positive;

. eta decay : PLOAT;

(initial_eta : FLOAT;

NI I
ORI e

[}
[}
)
\
E &
A eta : FLOAT:
(alpha : FLOAT;
' correct : float;
: last : natural;
T
[
begin -—- MAIN
, -- [0) : Get parameters from opsrator
‘§ —-- cost_threshold : relative change in weights and theta values
- determines when to stop training
-- initial eta : gain value
-- alpha : momentum value
; -- file_list : file name that contains complete list of
- files to work with. contains first, all the
[-- training files and then all the test files
P -~ output_interval : specifies the number of training iterations
- between sach system test
o -- width : desired distribution radius of initial weights

new_line;

put ("Enter cost threshold (float) "); get (cost threshold); skip line;
new line; - -
put?'sntor INITIAL ETA (float) "); gqet (initill_ctl); ukip_linc;

» new_line;
} put ("Enter ETA DECAY (float) "); get (eta_decay): skip_line;
¢ new line; -
put {"Enter ALPHA (float) "); get (alpha); skip line:
P new line; -
¥ putT'Entor width of distributions (float} ")}; gat(width); skip line;

new_line;
put ("Enter the number of Layer 1 nodes (K) (Int) "); get(K); skip line;
new_line; -
put ("Enter the number of Layer 2 nodes (L) (Int) "); get(L); skip_line;
® (new_line;
' put("Enter the number of input features (N) (Int) "); get(N): skip_line;
| new_line;
| put ("Enter the number of output classes (M) (Int) "); get(M); skip_ line:
new line;
put{"Enter the file list name ... ");get line(file list, last):
new line;
put{"Enter the number of training files ... "):get(num);:skip line;

new _line;
® put ("Enter the output interval... ");get(output_interval);skip line;
Create (File => Int_tilo, -— if quit.test is deleted from the
Mode => out file, -- directory during program execution
Rame => "Quit.test"); -- the current weights and thresholds
Close (Int_file); ~- will be written to a file without
<
\ —- halting execution
; -- declare the network layer variables
declare
¢
L1 : layer (N, X)
L2 : layer (X, L);
L3 : layer (L, M };
D_out : vector (1..M); -- desired output
4 AO : vector (1..M); —-- actual output
X center : vector (1 .. N); -- center of input training components
€ X_width : vector (1 .. N); -- distribution width of each component
(procedure compute_output is

)

RN U OO T I g
4 .“,‘n@»'tig'\’)ﬁ,"gﬁ"ﬁ.‘.?ﬁp’l"ﬂi'{’ LN i’c‘\(_‘,!l?,’l";ft'

L1.Xp := L1.X*Ll1.W:
Y := gigmoid (L1l.Xp-Ll.theta):
L2.X := L1.Y;

L2.Xp := L2.X*L2.W:
L2.Y := gigmoid (L2.Xp-L2.theta);
L3.X = L2.Y:

L3.Xp := L3.X*L3.W;
¢ L3.Y := spigmoid (L3.Xp-L3.theta):

end compute output;

procedure test data (x_center,x_width : in vector;

txlo list : in string;
last™ : in natural;
N,M : in integer) is
o
correct : integer := 0;
class : integer ;
last2 : natural;
rowl,coll : integer;
Int file : Text_io.file_type;
Int_file2 : Text ioc.file type;
file name : string(1..807;
< stougo array : array(l1..21,1..21)of float;
x count : integer := 1;
d size : integer;
sum : float := 0.0;
X : vector(1l..N);
D _out : vector(l..M);
AO : vector(l..M);
) (-- this procedure requires the input files to be in a specific format.
~—- the first record contains the class

-- remaining records are in a row, column, value format
-- for a complete 21 x 21 array.

—— the values are not normalized and not spread

-- input data is therefore read in, normalized and spread
-- before any additional computations are accomplished

begin

open (file x> Int file,
mode => in_file,
name => file list(l..last));

while not end_of file(int_tile) loop
D_out := (others => 0.0);
x_count := 1;
Gi qot line(int_file,file name, last2);
opon { £ile => Int !xloz,
mode => in file,
name => file_name(1..last2)});
got(!nt_tiloZ,clcll):

Yor row in 1 ..21 loop

for col in 1 .. 21 loop
@ get(Int_file2,rowl);
(qot(!nt_tiloz,coll):

ROACHOROAD
RO

- T WS - ~ » ":-'u-r.r.—.wvv—_y—v:——vv—-—-—vv——.‘v-vr-'r-T

got(Int_tiloz,Intoqor(Storngo_lrrny(row,col)));
end loop:
end loop:;

close (Int file2);

-- normalize by deviding each point by the sguare root of the
-- sum of the squares of the desired number of input points

d_size := integer(sqrt(float(N)))/2;
For row in 11 - d size .. 11 + d sige loop
For col in 11 < d_size .. 11 ¥ d_size loop
SUR := sum + storage array(row,col)**2;
end loop: -
end loop;

sum := sqrt(sum);

-- spread the normalized input data

For row in 11 - d size .. 11 + d_size loop
For col in {1 = d_size .. 11 + d_sige loop
Ll.x{x_count) := (storage_array(row,col)/sum - x_center(x count))}/
x width(x count) + 0.5; - -
x_count := x count + 1:
end loop: -
end loop;

D out (class) := 1.0;
compute output;
A0 := find _max(L3.Y):

new_line;

For j in L3.Y'range loop
put(13.y(3),4,4,0);

end loop;

if D out * AO = 1.0 then
correct :« correct + 1l; —— correct is based on the correct

end if; -- node having the largest value
end loop:

new line;

put{"Correct = ");put(correct,6);
nevw_line;

clolo(int_tilo);
end test_dats;

begin —- DECLARE block

-~ find the centers and width distributions of the
-~ individual components of the training data

G.t_nor-_vlluos(x_contor,x_yidth,tilo_lilt,lust,N,nu-);
—~ (1] : Initialize weights and thresholds for each layer

for j in Li.W'range(2) loop
for i in Ll.W'range(l) loop
uniform (center, width, seed, L1.W(i,j))
end loop:
uniform (center, width, seed, Lli.theta(j) };
end loop;
Ll.W old := L1.W;
L1.theta_old := Ll.theta;

Bl Sl dad Bl A ace sk ikl el aleh Shir ARE i Shh-adic uma- e glh Aet ek Saldies dis Ask B Ad Ad B m o audh lhoa Ain San Bae @ i Ahe a2y el

A-Bta Al Mnadng aal sad Aed ok Al g

it s i)

Pia et b

for j in L2.W'range(2) loop
(for i in L2.W'range(l) loop
E uniform (center, width, seed, L2.W(i,j) };
end loop;
uniform (center, width, seed, L2.theta(3));
- end loop:
~ L2.W old := L2.W;
L2.theta_old := L2.theta;

.

for j in L3.W'range(2) loop
for i in L3.W'range(l) loop
: o uniform (center, width, seed, L3.W(i,j));
{ end loop;
k> uniform (center, width, seed, L3.theta(j))
oend loop:
A’ L3.W old := L3.W;
L3.t§otl_old = L3.theta;

-- training loop
. total cost := cost_threshold + 1.0;
v count := 0;
D) while total cost > cost_threshoid loop
eta := initial eta * exp(-eta_decay * FLOAT(count));
f ~- [2) : Get input data

(get_input_data (L1.X,D out,x_center,x width,num,6N,file_list, last,seed);

. ~- [3]) : Compute Network output

compute_output;

—- (4]} : Update network weights

b, L3.del := output_dol { L3.Y, D_out);
update weights (L3.W, L3.W old, L3.del, L3.X, eta, alpha, cost):
‘s total cost := cost; -
® =

L2.del := internal del (L2.Y, L3.W, L3.del);
K update_weights (L2.W, L2.W_old, L2.del, L2.X, eta, alpha, cost);
total _cost := total cost 4 cost;

Ll.del := intotnal_dol (L1.Y, L2.W, L2.del);
A " update_weights (L1.W, L1.W_old, Li.del, L1.X, eta, alpha, cost };
total _cost := total cost + cost;

¢
¢ -- (4a)] Update the network thresholds
! - threshold values of output layer are not updated
3 update thresholds (L2.theta, L2.thets_old, L2.del, eta, alpha, cost):
3 total cost := total cost + cost;
| update_thresholds { Ll.theta, Ll.theta old, Ll.del, eta, alpha, cost):
“ total cost := total _cost 4 cost;
‘(: begin -- ex-eption block
)
if count mod output_interval = 0 then
L) new_line;
N put("Total Cost = "); put(total_cost,0,4,0); new_line;
: put(count,8);
Y test_data(x_center,x width,file list, last,N,M);
. open (File => Int_tile, —— Tf quit.test has been deleted
mode => out file, -— & name_error exception is raised
(name => "Quit.test");
A B-6
?
,‘(;

B

-,

W2 0% CAMEK OGO OUONEXRIUUOUOWE
“HJ#L[.ﬂJﬁsﬂh(S S ,,Jﬁﬂfﬂ,ﬂfﬂfﬂﬁ#ﬂﬂﬁﬁ

BN

y‘w-v et & e Nl h—aha o MRE AR U et Sl Sath o e h Bom A g b Avi ae e B d Boa addiabh ard Al AShE abh abd ol oRe o il o Rie s iy Ral diats Skt AR A bav i da ol ahl ath Sad AR A At geh Sall s |
A &

. Close (Int file);
. (end if;

count = count + 1;

o © EXCEPTION

9 When Name Error =)
"-:. save results(Ll.theta,L2.thets,L3.theta,

" x center,x width,L1.W,L2.W,L3.W);

:’.- Create (File => Int_fiTo,

e Mode =) out_filo,

. Name => "Quit.test”);

e Close (Int_file):

) L J count := count + 1;

. end; —-- exception block
k. end loop; -- training loop
N il

-
‘ put(”"final count = “); put(count,4); new lina;
' snvo_touults(Ll.thotn,!ﬂ.thotl,L!.thctq,—
B i x_center,x_width,L1.W,L2.W,L3.W);
D)
M ' end; -- declare block

end mp; I

" '
! !
. %

N |
I-‘

o

- e
By~
a8

L]
Tt
L

PR
]

-
5

Py

s Sy &)

'@
~~
.

.“;'r#\.l
LT
3

.

phll WAL BERE by

)

[V
L) 3« “m ¥
A IR SN

ST Q _ IO RO 9 > .
USRI SIS SN ¢ RN IO W S O N M RN

— (I E AR R R R R R R R R R R R R AR R R AR AR RN AREREEN NN)

- * PACKAGE TITLE : PERCEPTRON_SUPPORT *

—_— *

- * AUTHORS : LT STEVE TROXEL .
-— . CAPT DENNIS RUCK d
- R RS RN RN SRR R A A AR AR RSN PR R R R T ARR NS
—-— PR L RN P R AN RN R AR AR R R RN E O N R AR R AR R R RN R R AN R R AR A RN SRR AR RS

- * DISCRIPTION : This package contains the support

.
.

- ¢ INPUTS
.
.
*

with vector operations;
with math 1ib extension;
with float math lib;
with float_text io;

vith integer_text io;
with text io;

with systen;

package perceptron_support is
function sigmoid (input : vect
function output_del (Y, D out

function internal del (Y
w
next de

procedure update weights (W
W ol
del
X
eta
alph
cost

necessary to run MP
Procedure Dependent

oUTPUT : Procedure Dependent

2R R E R R R N AR R R R AR R R R AR ERE R R R AR R RN RERER 2]

use
use
use
use
use
use

or

*
L
*
-
*
-

vector operations;
lath_lfb_oxtonsion:
float_math _lib;
tlout_toxt—io:
integer_text io;
text io; -

) return vector;

vector) return vector;

1

d

vector:
: matrix;
: vector)} return vector;

: in out matrix;
: in out matrix;
: vector;

: vector;

: FLOAT;

: FLOAT:

: out FLOAT)};

function find max (X : vector) return vector;

procedure got_nor-_vuluos (x center, x_yidth : in out vector;

tile list : in string;

last : in natural;
N : in integer;
Num : in integer);

procedure qot_input_dntl { X, D_out : out vector;
X_center,x_width : in vector;

num,

: in integer;

tile_list : in string:

last

: in natural;

seed : in out system.unsigned_longword);

proredure save results(theta 1,thotl_Z,thotn_s,x_contor,xnyidth : in vector:

W 1,W 2,W 3 :"in matrix)

¢ -~ edure update thresholds (theta

in out vector;

theta_old : in out vector:

del : vector;

eta : PLOAT;

alpha : PLOAT:

cost : out FLOAT };

T WY O v

™ “"—7"7‘!"‘_#—1"‘

(end perceptron_support;

[] package body perceptron_support is
function sigmoid (input : vector) return vector is
output : vector {(input’range);

-- This function inplements the siqmoid function
~~ used in the output calculation

begin
for i in input’'range loop

begin
output(i) := 1.0/{1.0+exp(-input(i)));

exception
when FLOOVEMAT => output{i) := 0.0;

end;

o end loop:

return output;

end sigmoid;

function output_del (¥, D out : vector)} return vector is

del : vector {(Y’'range };

begin
for i in Y'range loop
del (i) := Y(i)'(l.O-Y(i))'(D_out(i)-!(i));
(end loop;

return del;

end output_del;

function internal_del (Y : vector;
w : matrix;
. next_del : vector) return vector is
del : vector (Y’'range };

W _slice : vector (W'range(2) }:
begin

for j in del’range loop

for k in W_slice’range loop
W glice (k) :w W(j, k);
end loop:
® del (3) :e@ Y(3)*(1.0-Y(3))*(next_del*W_slice):
end loop:

return del:
end internal_del;

function find max (X : vector) return vector is

o nax : PLOAT := 0.0;
(max_jindex : integer := X'

first:

output : vector (X’'range) := (others => 0.0);
begin
for i in X’range loop
it X(i) > max then
max = X{(i);
max index := ji;
end i¥;
end loop:
output (max_index) := 1.0;
return output:

end find max:

procedure get norm_values (x center, x _width : in out vector;

file_list : in string;
last : in natural;
N : in integer;
Num : in integer) is

x min : vector(l .. N) := (others => 1.0);

x max : vector(l .. N) := {others => 0.0):

class : integer:

last sub : natural;

rowl, coll : integer:

Int file i Text_io.file_type;

Int_file2 : Text io.file type;
tile name : string(l1..80);
storage array : arcay(l1..21,1..21)of float;

x_count” : integer := 1;
d size : integer;
sum : float := 0.0;

~~ This procedure finds the center and width of the distribution
~- of each component in the input data. This procedure is written
~- for the specific file format used in this thesis and would

~- need modification for different file structure.

begin ~- get_nors_values

open (file => Int file,
sode =) in_?ilo,

name => file list(l..last));

for) in 1 .. Mua loop
get_line(int file,file nawe,6 last sub);

open (file =»> Int file2,
mode => in Tile,
name => firo_nnlo(l..lnlt_lub)):

gqet(Int file2,class);

Por tow in 1 ..21 loop
for col in)1 .. 21 loop
get(Int file2,rowl):
got(Int filel,coll):
get (Int _file2,Integer(Storage array(row.colil);
end loop:
oend loop:;

close (Int _file2,:

»-10

o (

4 size = integer(sqrt(float(N)}))/2;

For row in 11 - d sise .. 11 + d_sige loop

For col in 11 - d_size .. 11 ¥ d size loop
sum := sum + storage nrray(rou col)**2;
end loop;
end loop;

sum := sqrt{sum);
—- Normalisze the data

For row in 11 - d_size .. 11 + d_size loop
For col in 11 - d sige .. 11 Y d_size loop
storuqo_nrrly(row,col) HL] sto:ngo Arruy(row,col)/sul,
end loop:;
end loop;

x_count = 1;
-- rind max and min values for each component
For row in 11 - d_size .. 11 d_size loop
For col in 11 - d_size .. 11 + d size loop
If storage Artly(row col) < x -xn(x _count) then
x min(x count) := storage ntray(row col);
end if;
If storage_array(row,col) > x_max(x_count) then
x lnx(x count) t= storage_ lrray(tow col);
end 1f;
x_count := x_count + 1;
end loop:
end loop;
end loop:

~- Compute center and width of distribution

for j in x max’range loop

x vidth(;) = x_max{j) - x _min(j);
x_contor()) = x_width(;) 7 2.0 + x _min(j);
end loop;

close (int_file);
end get_norm_values;

procedure get_ input_data (X, D_: out : out vector;
x conttr,x width : in vector:
nus,N :"in integer;
file_list : in string:;
last : in natural;
seed : in out uylto-.unaigncd_lonqvozd) is

class : integer;

pick : float;

last sub : natural;

rowl, coll : integer;

Int file : Text io.file_type:

tile_neme : string(l. .807;
storage_array : array(l. .21,1..21)0f float;

x_count : integer := 1:
d size : integer;
sus . float := 0.0;

8-11

-- This procedure reads in the input data and performs the
—- preprocessing necessary to send data to the actual perceptron.
(~— This procedure is written for the specific file format used
~- in this thesis and would need modification for different file structure.

L J .
begin
D_out := (others => 0.0);
open (file => Int file,
mode => in_file,
name => file list(l..last)):
® ~-— Compute which training file to read
sth_random(pick,seed);
pick := pick * float(nus) - 0.499;
if pick > float(num) - 0.5 then
pick := float(num - 1};
end if;
‘ for 3j in 0 .. integer(pick) loop
get_line(Int_file,file_name,last_sub);
end loop:;

close(Int_file);

open { file =) Int file,
aode =) in_?ilo,
. name => file name(l..last_sub));
get(Int_file,class);

L4 (Por row in 1 ..21 loop
for col in 1 .. 21 loop
qet(Int_file,rowl):
get(Int_file,coll);
get(Int_file,Integer{Storage_array(row,col)));
end loop;
end loop:

L close (Int_file);
d_size := integer(sqrt(float(N)))/2:
-~ Normalize and spread the data to a unit hypercube

For row in 11 - d_size .. 11 + d_sise loop
For col in 11 - 4 sise .. 11 + d sitge loop

(5 sum := sum + storage_array(row,col)**2;
end loop:
end loop:;

sum := sgrti{sum);

For row in 11 - d_size .. 11 + d_sise loop
For col in 11 - d_sise .. 11 + d size loop
® x(x_count) := (storage_array(row,col)/sum -~ x_center(x_count)j/

x_width(x_count) + 0.5;
x_count := x count + 1;
ond Toop:
end loop;
D_out (class) := 1.0;
end get_input_data;

(procedure |uvo_ro-ult-(thota_l,thot-_?.thotn_l,x_Fontor.x_vldth : in vector;

-12

16

| el M it Aiie e o A i bl A B '.l'-l!'"-.!"".~"""’l".um~.-M‘w-'v-v-va-vvuv-.-‘v‘\-'-v‘yv.-'vw.

W 1,W 2,W 3 : in matrix) is
Int_file : Text io.file_type;

-- This procedure saves the weights, theta values, and

~~ training component distributions of the network.

-~ This procedure is called when the mp program is

~- terminated by the cost function falling below threshold
-~ or whenever the operator desires via the deletion of the
-~ Quit.test file.

begin -~ save results

Create (file => Int file,
mode => out_file,
nase => "X center.dat");

for j in x_center’range loop
put{Int_ “file,x C.ht.t())L
new line(int 2110),

end loop;

Close (Int_file);

Create (file => Int file,
mode => out_file,
name => "x width.dat"):

for j in x_width’range loop
put(Int_ “tile,x width(j));
new_ line(int tTlo).

end loop;

Close (Int_file);

Create (file =) Int_tilo,
mode => out_file,
name => "L1 theta.dat");

for j in theta_1'range loop
put(Int_ file, theta _1(3));
new_ line(int !110),

end loop,

Close (Int_file);

Create (file => Int_file,
mode => out_file,
name => "L2 theta.dat");

for j in theta_2’'range loop
put(Int_file, theta_2(j));
nevw_line(int_file};

end loop: -

Close (Int_file);

Create (file => Int_tile,
mode =) out_file,
name => "L3 theta.dat");

for j in theta 3'range loop
put(Int_ £11%, theta _3t3)):
new_ line(int !110).

»-13

) |

[4]

- -

-

-l -

G

end

proc

temp
cost

begi

end loop:

Close (Int_file);

Create (file => Int file,
mode => out_file,

name => "L1 W.dat");

for j in w_l'rlngo(l) loop
tor k in W_l'range(2) loop
put(Int_tilc,w 1(3,k)):
new line(Int file):
end loop: -
end loop:

Close (Int_file);

(file => Int_file,
mode => out_file,
name => "L2 W.dat");

Create

for j in W 2'range(l) loop
for k in W_2'range(2) loop
put (Int_file,W 2(j,k)):
new line(Int_file);
end 105b:
end loop:

Close (Int_file);
(file => Int file,

mode =) out:filo,
name => "L3 W.dat");

Create

for j in W_3’'range(l) loop
for k in W_3‘range(2) loop
put(Int_file,W_3(j,k)};
New line(Int_file):
end loop:
end loop:

Close (Int_file);

save_results;

edure update_weights (W : in out matrix;
W _old : in out matrix;
del : vector;
X : vector;
eta : PLOAT;
alsha : FPLOAT:
cout : out FLOAT) is

FLOAT;

_8sum : PLOAT := 0.0;

n

r j in W range(2) loop

for 1 in W range(l) loop
temp :w W(i,j):

W(i,§) = W(i,3) + etatdel(j)*X(i) + alphs*(W(i, j)-W_old

W old i,j) := temp;

vvovyrewwww

cost_sum := cost_sums + ADS { ('(1.j)-V_old(t.j))/V(l.ji |H

end loop:
d loop:;

L3

An aue B g s SECosh-shis 2 nd o 4 ate g a ol ond o]

YN

g

YRR
0

v o s T Tty y

wTL Ly

s

'~ '... l"'

s P>

[]

-
'’ -

WY
o M

-~

1
N,
4
¥
'
.

cost := cost sum;

end update_weights:

procedure update_thresholds (theta : in out vector;
theta old : in out vector;
del : vector;
eta : FLOAT;
alpha : FLOAT;
cost : out FLOAT) is
temp : FLOAT;
cost_sum : FLOAT := 0.0;
t 3 : integer;
begin

for j in theta’range loop
t_J o= 3;
temp := theta(3j):
theta (j) := theta(j) + eta*del(j) + alpha*(theta(j)-theta old(j));
theta old(j) := temp;
cost_sum := cost_sum + ABS((theta(j)-theta old(j))/theta(3));
end loop;

cost := cost_sum;
exception

when NUMERIC_ERROR =>
put_line("UPDATE_THRESHOLDS : NUMERIC_ERROR info follows:");
putT"Index J = "}: put(t_j.3); put(", THETA(J) = ");
put (theta(t 3),0,4,0); put(", DEL(J) = "); put(del(t_j),0,4,0);
new line; put("THETA OLD(J) = "); put(theta_old(t_j).0,4,0);
put(", COST_SUM = "]; put(cost_sum,0,4,0);: new 1Ine;
put {"ETA = "J; put(eta,0,4,0); put(", ALPHA = ¥);
put(alpha,0,4,0); nov_lino:

end update_thresholds;

end perceptron_support;

4 P 2 XX A R R SR RS RN RS ENES SR ER SR EEEFRE S N
N (-— * PACKAGE TITLE : MATH_LIB_EXTENSIONS *
] _ . .
: - * AUTHORS : LT STEVE TROXEL *
‘K) - . CAPT DENNIS RUCK *

LR AR R R RN SRR R AR R R RS R R R AR RN R]

(IR REA R R R R R R E SRR R AR ER AR R AR AR RS R R AR RN RRR RS ERER]

-— * DISCRIPTION : This package contains support *

- . necessary to run MP .

-— * «

- * INPUTS ! Procedure Dependent L4

i L] *

¢ - * OUTPUT : Procedure Dependent *
I EE R R R R R E R R R EE R R R R AR R R A NS R R EE R R EREEESEREE SRR R X}

with systems; use system;
package math_lib extension is

procedure mth random (val : out float; seed : in out unsigned longword);
Y . pragma INTERFACE (vaxrtl, mth_random); -
pragma IMPORT VALUED PROCEDURE | lth_tlndOl, "MTHS$RANDOM™ ,
- mechanism => (value, reference)):

procedure uniform (center : in float;
\ width : in float;

seed : in out unsigned_longword;
val : out float);
¢ procedure gaussian {(mean : in float;
variance : in float;
N seed : in out unsigned_longword;
[} val : out float);

end math lib_extension;
(package math_lib extension is

procedure mth_random (val : out float; seed : in out unsigned_longword):
pragma INTERFACE (vaxrtl, mth_random);

. pragma IMPORT VALUED PROCEDURE (mth random, "MTH$RANDOM",

- - mechanism => (value, reference});

procedure uniform (center : in float;
width : in float;

* seed : in out unsigned_longword:

o val : out float);
\/
| procedure gaussian (mean : in float;
. variance : in float;
A seed : in out unsigned_longword;
P val : out float });
)

end math_lib_extension:

€
1
L
“
. €
\J
i)

o (|

8-16 /
|
i

J OSSO] 0 BLO DL
’-?“n‘l‘ 3 ek P "r’il"!';ztk LI AT

L] - \ . . . »
~ 8 A (M ™ 1 3
A A T ke ‘ﬂ’rsa‘-'w‘r’~’~‘A‘,lAQa,(’.!t’-."»?i’cfo’:ft':?i‘f ()

o i
'
»
v'.
" R
B
.'
\ — RRERDEARASE AR RANAARAROAARSOROABRRARSED
" O (- * PACKAGE TITLE : V!CTOR_OP!RATIONS .
. * »
A -- * AUTHOR : LT STEVE TROXEL .
® - . CAPT DENNIS RUCK .
-—— RAAR R AR AAN RS ERARRARR AR SRR AR DT P RARE RS
0
- — .".'.‘Q...'.'..'....‘i.Q.-".'..'l...'..'...t"'it.'t.
. ~— % DISCRIPTION : This package contains the vector math *
M - . support necessary to run MP .
‘: — e .
: -~ * INPUTS : Procedure Dependent .
R . —_— * *
J - * OUTPUT : Procedure Dependent *
—— .lQ.t..0.'..ﬂ..!Q.."...'."Q...Q'!.t...‘.‘t..'.l...'..
«
_. package voctor_opoutions is
1
Lo type vector is array (integer range (>) of FLOAT:
L) .b type matrix is array (integer range ¢>, integer range <>) of FLOAT;
function "*"(left : vector;
. right : matrix) return vector;
B .
Ry function "-" (left, right : vector) return vector;
;' function "*" (left, right : vector) return float;
'. [3 end vector_operations;
S
package body vector_operations is
b~ function "*"(left : vector;
~° right : matrix) return vector is
h
- 6 (sum : FLOAT:
. product : vector (right’range(2} };
:‘ begin
&
o for j in right’'range(2) loop
:' sum := 0.0;
K for i in right’'range(1l) loop
K sum := sum + left(i)*right(i,j);
. end loop;
= product(j) := sum;
.: end loop:
"
k) return product;
N
f: end "*";
1a
‘ function "-" (left, right : vector) return vector is
K
‘ dift : vector (left'range):;
K)
o, begin

o

d for 1 in left’range loop
1% Aiff(i) :w left(i) - right(i):
.: end loop;
[
¢ return diff;
"
i B-17
N

$ AN

N

LN A8 &5 6 e N

LI T

end "-";

function "*" (left, right : vector) return PLOAT
sum : FLOAT := 0.0;
begin
for i in left'range loop
sum := sum + left(i)*right(i);
end loop:
return sum;

end "o";

end vector_operations:

B-18

is

. e gl ot T ik ek ke Aot i ath Sk Attt oo il Nl Sale “Aba-diia Ake dia fne d'a 4 A A AL AM &0 Sub fob £oi |

L]
v
.I

L
TR -

<
N
- —_— BARARB N R ARAA A ARSI RARNSRAOORANARSN
P (- * PROGRAM TITLE : DATA DIS .
-— L] *
K. - * AUTHORS : LT STEVE TROXEL *
- ' — SR RN RN BRGNP RS AR R A RN O IR AR AN
J — I 2 XA R A R E R E E R R R R R R R F S R R R R RN R R R R RS RN RER R R AR X R

j -~ * DISCRIPTION : THIS PROGRAM COMPUTES THE DISTANCE .

. - BETWEEN A TEST ARRAY AND THE AVERAGE *
w -— LOCATION OF A SET OF TRAINING ARRAYS *
- J—— * *

«

(-~ * INPUTS : NUMBER OF INPUT FEATURES *
- . - * TRAINING AND TEST FILES .
{ - * *
;o -~ * OUTPUT : CORRESPONDING DISTANCES »
-, — [AR R E R RN AR R R A R R R R R R RN R R AR R R EE R R AR AN R SRS EEEEERREERERE N}
w,

? with text io:; use text_io;
'~ with float _text 1o, use float text xo,

\ with 1ntogor text io; use xntoqor text io;

- . with !lont_-ath_l.xb use tlont_llth_lxb
N3 Procedure Data_dis is
LS Type Array Type is array(Integer range <>, Integer range <>)of float;
» S_Array : Array Type{(1..21,1..21);

- T_Array : Array Type(l..21,1..21);

L S_File_Name : string(1..80);

a T Pile _Name : string(1..80);

i r;lo_ﬂuno : string(1..80);

C File LIST : string(l..80);

" $_Last,T_Last,n,num,

Cn last,last2,class,

; rowl,coll,d size : Integer;

> S_File : Text_io.file_type;
i) (T _File ! Text_io.file type;

INT File : Text_ “lo.file _type:

ﬁ' -- the first record contains the class
9' -~ remaining records are in a row, column, value format
A . -- for a complete 21 x 21 arrasy.
L for row in 1 .. 21 loop
for col in 1 .. 21 loop
- t_srray(row,col):= 0.0;
L5 s_array(row,col):= 0.0;
o end loop;
; send loop;
-
P
q.
\
nev_line;
put ("Enter the file list name"):;get line(file_ list, last);
o nev_line;
N put(“"Enter the number of training files...");get(nus);skip line;
nev_line;
K (put ("Enter the number of input features ...");get(n) skip_line;
“»
“
~ -19

N INT File2 T Text _io. file _type;
< S_row, S_col,skip,

< s v-luo, T_row,

1 T col, T_value : integer;

j s-bu-, T_sum,

w pDistance,sum float := 0.0;

ans : Character;

begin ~-Data_dis

.

-— this procedure requires the input files to be in a specific format.

. = ., " TR T Rpm e LIPTUR T DR TCR PO R ™) . Y v S
)
J.".
2 ¢
.
‘.l
Yy
‘8 (d_size := integer(sqrt(float(n)))/2;
5 open{ file => Int_file,
mode => in_file,
* L name => file list(l..last});
’\ -— it is assumed that the training files are listed first in
= —— the file_list file
:~: —— find the reference point
o~ -- this is the point specified by the average value of

-- each component in the first class of training data

for j in 1 .. num loop
get_line{int_file,file_name,last2);

O
LA I

S open{ file => Int_file2,
S mode => in_ file,
'l name => file name(l..last2});
WG get(int_file2,class);
® for row in 1 .. 21 loop
o”, for col in 1 .. 21 loop
] get(int_file2,rowl);
r get(int_file2,coll):
B~ get(int file2,integer(s_array(row,col)));
.; end loop:
,.d end loop;
1 close(int file2);
¢ -—
sum := 0.0;
':; -- normalize the input data
-:: for row in 11 - d size .. 11 + d_size loop
(- for col in 11 - d_size .. 11 + d size loop
L~ SUR = SUBR + s_nrrny(rov.col)"z;
i & (end loop;
\ end loop:
: sum := gQgrt(sum):
~:, for row in 11 - d _sise .. 11 + d_size loop
b for col in 11 - d size .. 11 + d_size loop
: t array(row,col) := t array(row,col) + s_nrrny(rov,col)/lu-:
: end Toop: -
‘ end loop;
L}
S end loop:
) close(Int_file);
- for row in 11 - d size .. 11 + d_size loop
’ for col in 11 - d sige .. 11 + d size loop
e, ! t_lruy(rov,coT) = t_lruy(tov,col)/!loat(nul);
[-
¢ ¢
..
';'
g end loop:
o end loop;
lh

open{ file => Int file,
mode => in file,
name => fiTe_list(l..last)):

1 @
n

- -

A

¢

-~ compute distances on the entire list of files I
vhile not end of file(int_file) loop

distance := 0.0;
sum := 0.0;

ot
—

e

B-20

o e

-
-

1

file name(l..35):m="
get Tine(int file,file name, last2):
open(file => Int fileZ,

mode => in file,

name => file name(l..last2)):
get(int_file2,class):

for row {in 1 .. 21 loop
for col in 1 .. 21 loop
get(int file2,rowl);
get(int file2,coll);
get(int file2,integer(s_array(row,col)));
end loop:
end loop;
close(int_file2);

for row in 11 - d size .. 11 + d size loop
for col in 11 - d_size .. 11 + d_size loop
BUR ®™ Sum + s_nrrny(rov,col)T‘Z;
end loop:
end loop:

sum := sqrt{sum);

for row in 11 - d size .. 11 + d size loop
for col in 11 - d size .. 11 + d size loop

distance := distance + (s_array(row,col)/sum -
t_array(row,col))**2;

end loop:
end loop;
distance := sqrt(distance);
new line:
putTfile name(l..35));put(distance,4,4,0);

end loop:

close(Int file};

End Data Dis;

8-21

POSITION SCALE AND ROTATION INVARIANT TARGET

RECOGNITION USING RANGE IMAGERY(U) AIR FORCE INST OF
TECH URIGHT-PATTERSON AFB OH SCHOOL OF ENGI

UNCLASSIFIED S E TROXEL DEC 87 GFI1T/GEG/ENG/87D-3 F/6 1779

FYF

NL

St A RS YRR CR Y4 AN IOk A et s el ae’ e e’ iy w
oW ! = r N * - - LA e e A i 0
[} ‘\’\ .t\%\f.‘.'&i\'.‘s':-.'.g S AT AC AN AT RTINS SRV AL LY ~". [_"."_".1.& SCTR Mt A A A a0 G5 0 AT 0 s hta gty 400 4la 4t A 2l o g it aes o]

il
[
jL'
L

ﬂi
‘TFPERS |
3

————

—

rr

r

r
EE

==

N
o

I

125 it e

v oo s g TN P LHA

e
@
LR AP A
. DR
Y
o f e

TAS S g :
e et ’l’.’l:,.,‘i'h&.“.v :
O N l‘w s

.

_a

— SRR ARAAN RS RRARRRER O RN PR AR OARRRRANE R A AR R R RRARARARRRRRADNAOER

* THE FOLLOWING IS A LISTING OF KOBEL AND MARTINS .
* DECLARATION HANDLER PACKAGE. THIS PACKAGE HANDLES .
* THE DECLARATIONS FOR THE EXECUTIVE PROGRAM. EXECUTIVE *
—— * ASSUMES A DIRECTORY SYSTEM SPECIFIED BY THE LAST DIR *
* AND DIRECTORY STATEMENTS BELOW. THESE NEED TO BE *
* CHANGED TO REFLECT THE USERS DIRECTORY SYSTEM AND .

. *

. *

WHERE ALL THE OUTPUTS OF EXECUTIVE ARE TO BE SENT
I T Y R Ry R Y P S Y R Y Y X L)

-- Program: DECLARATION HANDLER

-- Authors: Capt William Kobel and Capt Timothy Martin
-~ Date: 1 October 1986

~- Language: Vax Ada

-=- System: ISL VAX/VMS

-~ Punction: Allows global declarations
package DECLARATION HANDLER is

—— These declarations form the basic image array

type Cmplx Type is
record
Real : float:
Imag : float;
oend record;

type Image Array Type is array (integer range ¢,
integer range ¢>) of Cmplx_Typs:

~- This type declaration allows three different kinds of correlation for
- both the cyclic and linear cases

type Corr_Flag_Type is (Cir 0, cir_1, cir_2, Lin_0, Lin_1, Lin_2);

~- This type declaration is used to keep track of the file types within
-~ OPERATIONS_HAMDLER

type Array Flag_Type is (Square, Lg_Square, Polar, Lg_Polar);
~- These declarations form the basic image file dimensions

V_Row : integer := 256;
V_Col : integer := 256;

-- This declaration sets the default directory for all input/output
-- procedures within FILE HANDLER

Last_Dir : natural := 27;
Directory : string (1 .. Lalt_bir) :m "[afituser.stroxel.vidfiles)";

-- This sets up the pragma interface to the RTL to spawn DCL commands
procedure SEND_COMMAND (Command_Line : in string);

pragma interface (RTL, SEND_COMMAND):

pragss import_procedure (Internal =) SEND_COMMAND,
External =) "lib$spawn”,
Parameter_Types => (string),
Mechanism =) (descriptor(8)});

end DECLARATION_HANDLER:

B8-22

i o L e b e A b A b L At i i il Lo Rl et A Al iR BLAC _BAt She AR S BA- AA__BA oAa 48 A8 S8 AA_ B _as _as Ahacda _as ue o

el el
A‘

BT

-
|
~~

-

L

RERAB N RO RRR AR AR RO AR O RN AN AR

- * PACKAGE TITLE : PEAK .
-— . .
- * AUTHORS : LT STEVE TROXEL .

(2R ER R AR SRS SRR RS R RSN Y]

AN RN P AR R AR R AR R R A AN A AN R LR A AR R A RN R AR DA R ARG A NN R OR AR RS

~- * DISCRIPTION : THIS PROGRAM LOCATES THE PEAK VALUE *
— e IN AN ARRAY AND SAVES A 21X21 ARRAY *
~— e OF NUMBERS AROUND THE PEAK .
—— * *
~- * IRPUTS : 512 X 128 CORRELATION ARRAYS .
—— » []
~- * OUTPUT : A 21 X 21 ARRAY AROURD THE PEAK .

AR B AR AR RPN A AR R R AR AR AN N A AR ARA G AEAR AN RARNAR R AR SR RAR

~~ TH1S PROGRAM IS SET UP TO RUN IN A BATCH ENVIRONMENT -
~- DURING THE THESIS I WAS USING EXECUTIVE TO CREATE MANY -
-— PSRI CORRELATIONS. THESE ARE VERY LARGE ARRAYS (2K BLOCKS) --
~= AND TAKE TIME TO CREATE (10 MIN CPU TIME). THIS MADE IT -
-- NECESSARY TO RUN THE CORRELATIONS CONTINUOUSLY IN A BATCH -
-- MODE. HOWEVER, IN A SHORT TIME THE CREATED ARRAYS WOULD -
~~ EAT UP ALL AVAILABLE MEMOREY. SUBMITING THIS PEAK PROGRAM -
—— ABOUT EVERY 2 HOURS HELP IN THIS PROBLEM.

with text io; use text io;

with float_text_io; use tlout_toxt_io:

with integer text_io; use integer_text io;

with rilo_ﬁaﬁdlor: use File Handler; -— A KOBEL,MARTIN PACKAGE

with Declaration_Handler: use Docl?rltion_ﬂnndlor:

Procedure Peak is

-~ FPor some reason these large arrays have switched to an —-
-- x,y representation where 0,0 is the lower left corner --

Image_Array_ Type(0..511,0..255);
string(1..80);

string(1..80);
string(l..Last_Dir+80);
Text_io.file type:

Image

Image File Name
New File Name
Total _rile_Name
Intorﬁal_!ilo

% ee as e

Last : natural := 0;

Last_new : natural := 0;

Lnst_;ot-l : natural := 0;

Max row : integer := 0;

Max col : integer := O0;
rowl,coll,row2,col2 : integer := 0;

max val : float = 0.0;

ans~ : character;

Extension : string (1..4) := ".dat";

begin -~ Peak

Start_loop:
loop

-— The peak.com file will create a file list of all

-— the .lcr files. These files are the correlation files.
-~ However, the file list will start with a directory name
-— that we don’'t want to read

Got_lino(x-nqo_filo_pa-o,lu't):

o
;5
™
y
\
' If Image_file name(l) = 'R’ or
" (Image file name(l) = ’r’ then
L exit Start_loop:
o end if;
i @
end loop ltlxt_loop;
\J Pank_loop:
Al loop
"
LS max _val := 0.0:
' Read _rile(Image Pile Name, Last,Image);
. Change_Extension(Image File Name, New File Mame, Last,
N Last_New, Extension);
e Last_Total := Last _new + Last dir:
= Total File Name(l..Last_total) := Directory(l..Last_dir)
" & New _File Name(l..Last New):
N Create (file => Internal File, -
: mode => out_File,
ro name =) Total file Name(l.. (Last_Total)));

CPala Pt

3

~-- find the peak value

For row in Image’range(l) loop
For col in Image’range(2) loop
If Image(row,col).real > max val then
max_val := Image(row,col) real;
rowl := row;
coll := col;
end if;
end loop:
end loop:

~- create a 21 x 21 array around the peak
-- a wrap around is used between the top and bottom
-- and between the sides

. (Put (rowl);Put(coll);Put(max_val);
For row in rowl-10 .. rowl+ld loop
For col in coll-10 .. coll+l0 loop I
If row ¢ O then
row2 :m= 512 + row; :
else
if row > 511 then
row2 := row - 512;
else
. row2 := yow;
end if;
end if;
If col ¢ 0 then
col2 := 256 + col;
else
If col > 255 then

col2 := col - 256;
else
col2 := col;
. end if;
c end if;
put(Internal File,row2,6):
put(Internal File,col2,6):
put(Internal file,Integer(Image(row2,col2).real),10);
nov_lino(!nt:rnll_filo):
End loop:
End loop:

6 put(Internal Pile,999,6);
(put(Internal Pile,999,6);

B-24

ra b 'y
",‘rf,fi', 1, b l’

T T TN T O T T O rEnT

put(Internal_File,999,6);
Close(Internal_File);

-~ after the list of files there will be
-~ a blank line, this is where we want to stop

Get lino(I-aqo_tilo_pnno,lnlt);
1f Tast = 0 then

exit peak_loop;
end if;

end loop peak_loop;
End Peak;

AR RR RS R AR SRR AR R AN R R RN AR R A AR R ORRRRRRRY

¢« THE FOLLOWING IS A LISTING OF THE PEAK.COM *
* PILE USED TO RUN THE PEAK PROGRAM *

KA KRR SRR A AR SR NS R R R RSN RN RGP AR AN RN AR R RN ARAN

$set default [afituser.stroxel.vidfiles)
$dir/col=l/out=peak.inp *.lcr
$assign/user peak.inp sys$input
$assign/user peak.out sys$output

$run peak.exe

$del *.lcr;*

$pu *.lgf

$pu *.vid

AT OO TR e TON'T

~- The delete removes the correlation files which are not
-~ needed since we nov have the peak. The pu statements are
~- to remove extra rotated versions of the psri files (.lgf)

-- and the vidio files (.vid)

B8-25

VT TR TRy

o

At haz a4

CAl Ao Sed

L)
'y
N
3
4
l
~
: o VRO ECBANENNRE R RRNRRARENDAA N RN ANRNARRORS
o (- * PACKAGE TITLE : GOODMAN_SCHWARZ ’
— - *
.
" -- * AUTHOR : LT STEVE TROXEL *
. . — CRREREBAROE R PR AR RN RNARNRR R A RO AR ORI RARS
.' - (AR R AR N R R R R R R R R AR R 2R R R R R RS RS EE R RN RS
‘\ -~ * DISCRIPTION : This package executes a Goodman-Schwartz *
~ ~-- ¢ correlation as discussed in my thesis. *
. - . The correlation is performed by first .
8 - . deviding the template into 9 sections *
A - . and correlating with each of the 9 .
. - . seperately. This package alsc allows *
: - . for location selection based on the *
(_. -— * nusber of sectors that pass threshold. *
,;- - This locates partially occluded objects. *
* oY —— L] -
»
:q - * INPUTS : Image_array, T.lpllt.~lr!ly *
Y - Tolerance used to determine acceptable *
W - * peak values .
LA - * *
e - * OUTPUT : Location of the correlation peak .
. - . Complete correlation array *
l o (A2 A R RS R R R R R AR R R R R R AR R RS AR ERR RS2 R 2
(M,
i‘ — (2R R R R R A R E R R 2R AR R R R RS R R AR AR RSN SRS R RSN NS
:I - * THIS PROCEDURE ASSUMES THAT THE SUPPLIED TEMPLATE *

) - * IS CENTERED AT THE 128,128 LOCATION IN THE ARRAY *

J— (A2 2R R R AR R RSN A R ESES RS2SRRSR REEERERS AR XN

with text io; use text io;
X with float _text_io; use float _text_io;
N with integer text io: use zntogor text Jos
with float_math 1Ib; use float math_1ib;
r. with declaration_handler:; use declaration _handler;
2 with file_handler; use tilo_hlndlor,--k KobelaMartin
K. == Package
Procedure Goodman_schwarc is
Inage : Image_Array Type(0..255,0..255);
Temp : Image_Array Type(0..255,0..255);]
Temp_hold : Image_Array_ Type(0..255,0..255);
Btmp : Image_Array Type(0..255,0..255};
Num_Array : Image_Array_Type(0..255,0..255);
Num_sector_Array: Il.qo _Array Typo(O..ZSS 0..255);
tluqo_nc.o : string(l .80);
Temp_nanme : String(1l..80);
Last Image ¢t natural := 0;
Llst:rolp : natural := 0;

Temp sum : float := 0.0;
To-p:nvo : float := 0.0;
Temp count : integer := 0;
Max Row Image,

Max Row Temp,

Max_Col Image,

Max Col Temp,

S row,

S col,

T?i_tov,

Tri_col,
Row_limitl,
Row_limit2,
] Col limitl,
Col limit2,
¢ Count,
(Best_row,

Ly

5%

a i

B-26

num_sector : integer;
Threshold,
Tol,
® limit,
an_vnl,
Sub_limit,
Sub_thresh,
Sub tol : float:
Choice,
Row Dim,
Col _Dim,
Min_row di-,
. mx row dx-,
Min~ =el dx-,
e l_dil : integer;
Ex"ension : String(l..4) :=s " . bfc";
Ans : Character;

(Best_col,

-— AR AE DR ORI R NG E R R DR R R RAARRNERAN O AN ARARONRN GO RGN RARND RS

‘ -t PROCEDURE FIND DIM *
~= * THIS PROCEDURE PINDS THE DIMENSIONS OF THE TEMPLATE *

e Y2222 AR A R E R RS R R R A R R R R R R R R RS R R R R R R R R A R F X T X RN RN RN R)

Procedure Pind dim(Temp _array
- Min_row_dim
Max _row_ " dim
Min col “dim
Max col di-

in out Image Array Type:
in out Integer:

in out Integer:

in out Integer:

in out Integer) is

s ss ss s ee

begin -- Find_dim

Min_row dim := 256;
Max_ _row " dim := 0;
Min_ “col di- = 256;
Max col di- 1= 0

® (For row in Temp_array’ranga(l) loop
For col in Temp_array’range({2) loop
If Temp_array(row,col).real /= 0.0 then

If row > Max_row_dim then
Max row dim := row;

End itT ~

If row ¢ Min_row_dim then
Min_row_ dim := row;

End it
. 1f col > Max_col_dim then
Max_col dxl 1= col;
End it

If col ¢ Min_col_dim then
Min_col_dIm := col;

End 17
' gnd if;
End loop:
End loop:
End Find_dim;

G e Y A X X I I E S E R EEE R RS FREEREAERRRSRAREEAZEEEREN SR YR 4
- PROCEDURE SMOOTH J
-- * THIS PROCEDURE SMOOTHS THE VALUES OF AN ARRAY *
—- * THIS IS NEEDED IF THE ARRAYS CONTAIN NOISE .
-- * THAT MUST BE CORRECTED FOR .

— VR RRG P ROORRNNERE RO ORORPOARNRERNRNCR O RS RNORNONNES

== The goal in the smoothing operation is to make sure that each

¢ -- individual pixel is numerically between each adjacent pixel.
(== If the pixel is numerically outside the value of adjoining
8-27

A

-- pixels, its value is set equal to the pixel value its closest to.
(: Procedure Smooth (I_array : in out Image_Array_Type) is
@ T_Image : Image_Array Type(0..255,0..255);
Punction Max(A , B : float) return float is
C : float;
begin ~- Max

‘ If A > B then
C := A;
Else
C := B;
end If;
Return C;
End Max;

‘ Function Min(A , B : float) return float is
C : float;
begin ~- Min

If A ¢ B then
C = A;
Else
|i C = B;
End If;
Return C;
End Min;

begin -- Smooth

T_Image := I array;
® (For row in I_array’'first+l .. I_array’last-1 loop
For col in I_array’first+l .. I_array’last-1 loop

If (I_array(row,col).real >= I array(row,col-1).real and
I_array(row,col).resl <= I array(row,col+l).real) or
(I_array(row,col).real <= I array(row,col-1).real and
I_array(row,col).real >= I:arrly(row,col+1).roa1) then

1t (I_lrruy(row,col).ronl = !_urrly(row-l,col).ronl and

I_array(row,col).real «= 1_|rrny(rov+1.col).roll) or
(I_array(row,col).real (= I_crrly(tov-l,col).xonl and
‘i I_array{row,col).real = I_ttrly(rov+1,col).ton1) then

null;

elsif I_array(row,col).real >= I array(row-1,col).real and
I_nr:ny(rov,col).roul >= I _array(row+l,col).real then

T _Image(row,col).real := Max(I array(row-1,col).real,
e I_array(row+l,col).real);

else T_I-uqo(rov,col).xcnl - Hin(l_nrrcy(rov—l,col).ronl,
I_array(rowtl,col).real);
end if;

else
If I_array(row,col).real >= I array(row,col-1).resl and
‘. I_array(row,col).real >m I srray{row,col+l).real then

(T_Image(row,col).real := an(x_lrruy(rov,col-l).roul,

B-28

(I_array(row,col+l).real);

else

. T_Image(row,col).real :m= Hin(x_uruy(row,col-1).real,
I_array(row,col+l).real);
end if;

If (T Image(row,col).real >= I array(row-1,col).real and
T_Image(row,col).real <= f—nrrny(row+1,col).rc|1) or
(T_Image(row,col).real <= I array(row-1,col).real and
T _Image(row,col).real >= f:|rrny(rov+1,col).ronl) then

null;

olsif T_I-ago(rov,col).rOIl >m I_lrrny(tov—l,col).roal and
T_Image(row,col).real >= I array(row+l,col).real then

T_Image(row,col).resl := Max(I_array(row-l,col).real,
I_array(rowsl,col).real);
‘ else

T Image(row,col).real := Min(I_array(row-1l,col).real,
I_array(row+l,col).real);

End if;
End if;
End loop:
o End loop;
I_array := T_Image;
End Smooth;

e A 2R R XA A A R R X R R R 2 A A R K R R R R BXRE AR EERE A AR R NN]

- PROCEDURE GRADIENT *
-= * THIS PROCEDURE TAKES THE GRADIENT OF AN ARRAY *

(S 2R R 2 R R A R R A R R R A A R R A R R X R R R AR A AR R RAR R R RERES RN]

procedure Gradient{Image Array :@: in out Image Array Type) is

. type CX_Array Type is array(integer range ¢>,integer range <>) of float:
type CY_Array Type is array(integer range ¢>,integer range <>) of float;

sumX : float;

sumY : float;

(.4 : CX_Array Type(l..3,1..3);

cy t CY_Array_Type(l..3,1..3);

I_hold_array : finqo_prruy_typo(o..255,0..255);

7 .
bagin -~ Procedure Gradient
cx(1,1) := -0.5;
cx(1,2) := -1.0;
cx(1,3) := -0.5;
cx(2,1) := 0.0;
cX(2,2) := 0.0;
- cX{(2,3) := 0.0;
A4 €X(3,1) := 0.5;
CX(3,2) :=1.0;
€X(3,3) := 0.5;
cY(1,1) := -0.5;
cY(1,2) := 0.0;
cY(1,3) := 0.5;
cY(2,1) ts ~1.0;
® €Y(2,2) := 0.0;

(CY(2,3) :m= 1.0:

DOOGONORINAH)
o ’el!Q!‘!,e‘?‘l‘?’-"!."lﬁ"n‘a‘Q. ¢

hantibaindind i dM A Al A Al i s Ak AR A Al e ki bbb el s LA il ol afia® At o har At RAN RS il Aol ol ik Salk Sok Aok Aak Sai Sk Al Aadh sk A B A Rdh A B 4 28 Ave &' . |

cY(3,1) := -0.5;

(CY(3,2) := 0.0;
CY{(3,3) := 0.5;
‘ for row in I_hold_nrr.y'nnqo(l) loop

FPor col in I_hold array’range(2) loop
!_hold_lrzly(rov,col).ronl = 0.0;
I hold_nrtly(row,col).illg 1= 0.0;
end Toop:
end loop:

® For Row in 1..Image Array’last(l)-1 loop

' For Col in l..Image Array’last(2)-1 loop
sumX := 0.0; -
sumY := 0.0;

for n in 1..3 loop
Por m in 1..3 loop
sumX := sumX + CX(m,n) * (Image Array(row+m-2,col+n-2).real-
. Image_Array(row,col).realj;
™ end loop:;
end loop;

Por n in 1..3 loop
For m in 1..3 loop
sumY := sumY + CY(m,n) * (Image_Array(row+m-2,col+n-2).real-
Image Array(row,col).real);
end loop:
[~ end loop;

If sumX > sumY then

ol

I_hold Array(row,col).real := sumX;

else
I_hold Array(row,col).real := sumY;
end 1¢;
end loop:
end loop;
“ Image_array := I _hold array;

end Gradient;

s X E 2 A R A R R R X R R A R R R A R R R R A R RS R R R R R AR R AR R AR ERES R XS]

- PROCEDURE SUB CORR .
--— * THIS PROCEDURE PERFORMS THE SUB CORRELATION .
-— * MULTIPLICATIONS AND ADDITIONS REQUIRED FOR EACH Or *
[~— ¢ THE SHIFTS IN THE GOODMAN-SCHWARTZ CORRELATION *

e X R R R R R R R R X R X R R R RS R R R R R RS R EE RSS2 2

Procedure Sub_corr (Image : in Image_Array_Type;

Temp : in Image_Array_Type;
Btmp : in out Image_Array Type;
Num_Array : in out Image Array Type:
Nua_sector Array : in out Inage_Array Type;
Row limitl™: in Integer:

@ Row_limit2 : in Integer:
Col_limitl : in Integer;
Col limit2 : in Integer;

S row : in Integer:
$ col : in Integer;
Row : in Integer;
Col : in Integer;
Count : in out Integer;
® Best_row : out Integer;
(lo-t_col t out Integer;
B-30

P Limit : in Float;
K (Threshold : in Float;
" Max val : in out PFloat;
| cholce : in Integer;

Temp_ave : in Float;
Temp_count : in Integer;
Sub_limit : in float;
sub_thresh : in float) is

- - -
-

YWY =

Target sum,
pife,
Su-_top,
. Sum_Bottonm,
Top.,
Bottom : Float;

o -

Begin -- Sub_Corr
Target_sum := 0.0:
sum_top := 0.0;
sum_bottom := 0.0;

1f Abs(Nu-_Atray(row,col).roll-Throshold) ¢ Limit then

g If choice = 2 then
;{ -- Equalize the average of the target pixels to that
X
N |
K
ﬁ
. -~ of the template pixels
;. For Vrow in Row_limitl .. Row_limit2 loop
. For Vcol in Col_limitl .. Col limit2 loop
o Target Sum := Target sum + Image(vrow,vcol).real *
- Btmp(vrow—row+128,vcol-col+128).real;
K ~, End loop;
R (End loop:
N o Diff := Temp ave — Target_sum / float({Teep count):
) Else - -
v Ditf := 0.0;
3 End if;
«
: For Vrow in Row_limitl .. Row limit2 loop
'y For Vcol im Col_limitl .. Col_limit2 1loop
top := (Image({Vrow,Vcol).real + Diff) *
® Temp(Vrow-row+128 , Vcol-col+128).real;
bottom := ((Image(Vrow,Vcol).real + Diff) *
& Btmp(Vrow-row+128,Vcol-col+128).real)**2;
3 Sum_top := sum _top + top:
2 Sum_| “bottom :m su-_botto- + bottom;
B) End IOOP:
3 " End loop:
« If sum bottom /= 0.0 then
. 1f abs(sum _top**2/sum_bottom - sub thresh) < sub limit then
Num_ sector Atruy(rov col).real = Num_sector uttcy(rou,col) real +
1.07
end if;
A Num_Array(row,col).real := Num Array(row, col).real+
;‘ sum_top *#+ 2 / sum botto-,
A end if;
] < If Num_Array(row,col).real > Max_Val then
K7 Hll_v.l re Num Atrly(rov,col) Treal;
Pest row := row;
=T lolt:Eol :m col;
», End 1f;
”
'ﬁ Count := count + 1;
* else
- ‘ Mum Array(row,col).real := 0.0;
. (End if;
\l
)
A)
[B-31
s

MOAOE
S

End Sub corr;

e S0 S R AP NN NP AP RS RN EAPNNROIBCENESTRORSIOES

-— ¢ MAIN PROCEDURE OF GOODMAN SCHWARZ *

- ..i......'..I'.....'.‘.lt'.?l...‘.'...
Begin -- Goodman schwarg

Por row in Image’'range(l) loop
Por col in Image‘range(2) loop
lu-_Array(row,col).ronl e 0.0
Num Array{row,col).imag := 0.0,
Num sector Array(row,col).real := 0.0;
TOIE hold(row,zol).real := 0.0;
Tolﬁ:hold(rov,col).il.q = 0.0;
End loop;
End loop:

put({“"Image File: ")

Got_rilo(!ncgo Nn-o,Llst_I-ugc,an_Row Ilago,nlx_Col_1-ago):
put{"Template File: "}: -
Got_?ilo(Tolp_ano,Lcst_?onp,Hax_Row~To-p,Hlx_Col_T.lp):

- Tol is used as what amount below threshold should a point be

-- concidered acceptable. This effects the further processing rules.
- Sub tol is used for each individual sector. To use this program
- to check for partially occluded targets, tol should be set to 1.0
- and set sub tol to the tolerance value (ie. 0.8 means that 20% of
-— the ideal max is acceptable).

Put ("Enter Sum Tolerance : "); Get(Tol);skip_ line; New_Line;

Put ("Enter Sector Tolerance : "); Get(sub Tol);skip_line; New _Line(2);
Put("1) Gradient Operation "); now_lino:-

Put("2) Average Equalization ");new_line(2);

Put ("Enter choice"):;get(choice);skip line;new_line;

Rold_rill(IIIQQ‘NIII,LI!t_IIIg.,IIIq.);
Rold_?ilo(?oup_ﬂnlo,Last_Tolp,Tonp):

Smooth(Temp);
Smooth(Imuge):

If choice =] then

Gradient(temp):
Gradient(image):

-- Elininate a two pixel boundary around the template

Por row in temp’first(l) + 2 .. temp’last(l) - 2 loop
For col in temp’first(2) + 2 .. temp’'last(2) - 2 loop
if temp(row,col-2).real = 0.0 or
temp(row,col+2).real = 0.0 or
temp(row-2,col).real = 0.0 or
temp(row+2,col).real = 0.0 then

to-p_hold(rov,col).roll = 0.0;

else
temp_hold(row,col).real := temp(row,col).real;

end if;

end loop:
end loop:;

B-32

I,

temp := temp hold;
End 1¢f;

* * ot N
—

-~ Create & binary form of the template

For row in temp‘'range{l) loop
For col in temp’'range(2) loop
if temp(row,col).real = 0.0 then
btmp(row,col).real := 0.0;
else
btmpirow,col).real := 1.0;

»

v

‘

] end 1¢;

» end loop:

. end loop:

A

® Find dim(Temp Min_row_dim Max_row dim,Min col dim ,Max_col dim);
row_dim := Max_row dim - Min_tow dim + 1; - -

& col dim := Max_col dim - Min col dim + 1;

' put{"Begin Correlation ");

{ new _line:

\ - S_row := Integer(row dim /2):

¢ S_col := Integertcol dim /2):

] Tri_row := Integer(row _dim/3):

'Q Tri_col := Integer(col dim/3);

: For Quad 1n 1 .. 9 loop

p (Count := 0; Max_val := 0.0; temp sum := 0.0; temp count := 0:
0 If Quad = 1 then
L limit := 100.0; threshold := 0.0; sub thresh := 0.0;
” -

" -- PFind the average value of the template pixels

4

- Por rowl in 128 - S_row .. 128 - $_row + Tri_row loop
5 For coll in 128 - S col + Tri_col + 1

128 + 8 col - Tra_col - 1 loop
If temp(rowl, coll).real /= 0.0 then
Sub_thresh := sub thresh + Temp(rowl,coll).real ** 2:

¢ Temp_sum := Temp sum + temp(rowl,coll).real:
o Tolp_count e Temp_count + 1;
’ End if;
. End loop;
“ End loop;
“ Temp_ave := Temp_sum / float{temp count};
i,' Sub_limit := Sub_thresh * sub tol:
- elsif quad = 2 then
Threshold := Threshold + sub thresh;
sub thresh := 0.0; -
Put(” Threshold = ");put(threshold,2,2,0);new line;
limit := Threshold * Tol: -
b4 -~ Find the average value of the templste pixels
Por rowl in 128 - 8 rov ¢+ Tri row + 1
128 + S _row - Tri row - 1 loop
> Por coll in 128 - S col + Tri col + 1 ..
> 128 + S col - Tri col - 1 loop
- I1f temp(rowl,coll).real /= 0.0 then
L Sub thresh := sub thresh + Temp(rowl,coll).real ** 2:
L < Tolp_lﬁl H TQIp_lul—b temp(rowl ,coll).real;
[Temp count := Temp_count + 1;
(End if;
Ko
&
al
) B-33
»
L]

> =

¢
-~
“~
~

LI S Sy Y 0 Yol e e) W) 0 O ORI NORE
n.'ﬁ"-’,"o"l NG o, 't"'a"‘- l'e.l'-,i. Tk v“',."l. 0.‘"""0..’0."..""—“1,‘, ol 'r.*‘n"'a" 1, "f'r'"'--.-"r"-‘ et e

el TR T TV TLTIRCTTRTYT R M Y T .

At el Rl Al Al AR A AN S AN A aht abd Sid ohd allh b it o EAL Sabdian et auh b B4 Soh 4. 4o p g g s org Lo ot s B IR

Bnd loop:;
End loop:
Temp ave := Temp sum / float(temp count);
Sub_Timit := Sub_thresh * sub_tol7

elaif Quad = 3 then

Threshold := Threshold + sub thresh;

sub thresh := 0.0; -

Put(" Threshold = ");put(threshold,2,2,0);new_line;
limit := Threshold * Tol;

-- Find the average value of the template pixels
For rowl in 128 + S_row - Tri_row
128 + s Tow loop
FPor coll in 128 - S _col + Tri col + 1
128 + S col - Tri col - 1 loop
If temp(row}, coll).real /= 0.0 then
Sub_thtosh := sub_thresh + Temp(rowl,coll).real ** 2;
Temp_sum := Temp_sum + temp(rowl,coll).real;
Temp_count := Temp count + 1;
End if; -
End loop;
End loop;
Temp ave := Temp sum / float(temp count);
Sub_Timit := Sub_thresh * sub_tol7

elsif Quad = 4 then

Threshold := Threshold + sub_thresh;

sub thresh := 0.0;

Put(” Threshold = ");put(threshold,2,2,0);new_line;
limit := Threshold * Tol;

—-— Find the average value of the template pixels
For rowl in 128 - S_row + Tri_row + 1
128 + s_ Tow - Tri_ Tow - 1 loop
For coll in 128 - S col
128 - s col + Tri _col loop
If temp(rowl,coll).real /= 0.0 then
Sub thresh := sub_thresh + Temp{rowl,coll).real ** 2;
Tolp_sin := Tesp_sum + temp(rowl,coll).real;
Temp_count := Temp_count + 1;
End if;
End loop;
End loop;
Temp_ave := Temp _sum / float(temp_count);
Sub_Timit := Sub_thresh * sub_tol;

elsif Quad = 5 then

Threshold := Threshold + sub_thresh;

sub thresh := 0.0;

put(" Threshold = ");put{threshold,2,2,0):new_line;
limit := Threshold * Tol;

—~ Pind the average value of the template pixels
Por rowl in 128 - S _row + Tri_row + 1
128 + s_ Tow - Tri rou - 1 loop
For coll in 128+ S _col - “rrei _col
128 + S col loop
1f temp(rowl,coll).real /= 0.0 then
Sub_thresh := sub_thresh + Temp(rowl,coll).real ** 2;

B-34

—

G

Temp sum := Temp sum + temp(rowl,coll).real;
Temp count := Temp count + 1:
End if;"
End loop;
End loop:
Temp ave := Temp sum / float{(temp count);
Sub_Timit := Sub_thresh * sub_tol?

elsif Quad = 6 then

Threshold := Threshold + sub_thresh;

sub_thresh := 0.0:

Put(” Threshold = ");put{threshold,2,2,0):nevw_line;
limit := Threshold * Tol:

-- Find the average value of the template pixels
Por rowl in 128 + S_row - Tri_row
128 + S_ Tow loop
For coll in 128 - S col
128 - § col + Tri _col loop
If temp(rowl,coll).real /= 0.0 then
Sub thresh := sub_thresh + Temp(rowl,coll).real ** 2:
Temp sum = Temp sum + temp(rowl,coll).real;
Temp_count := Temp_count + 1;
End if;
End loop:
End loop:
Temp ave := Temp sum / float(tonp count);
Sub_Timit := Sub_thresh * sub_tol;

elsif Quad = 7 then

Threshold := Threshold + sub_thresh:

sub thresh := 0.0:

Put(" ‘Threshold = ");put(threshold,2,2,0);:new_line;
limit := Threshold * Tol:;

~- Find the average value of the template pixels
Por rowl in 128 + S row - Tri_row
128 + S_row loop
Por coll in 128 + S col - Tri _col
128 + S col 1loop
If temp(rowl,coll).real /= 0.0 then
Sub_thresh := sub _thresh + Temp(rowl,coll).real ** 2;
Tenp_ sum := Temp_: sum + temp(rowl,coll).real;
To-p_count H Tonp count + 1;
gnd if;
End loop:;
End loop:
Temp ave := Temp_sum / float(temp count);
Sub_Timit := Sub_thresh * sub_tol:

elsif Quad = 8 then

Threshold := Threshold + sub_thresh;

sub thresh := 0.0;

Put(" Threshold = ");:put({threshold,2,2,0);nev_line;
limit := Threshold * Tol;

-- Find the average value of the template pixels

FPor rowl in 128 - S_row ..
128 - 8| Tow + Tri_row loop
Por coll in 128 - S _col ..
128 - s_col 4 Tri_col loop

B-35

Lunedhhatnd et ol R 2 e e e Bl Al il ol el S b Al A A Aol Sk Aol Aol A B S .8 St At A A S A 8.8 £ .8 A 8 S 0 Aok 2.8 A0 B8 Sab S8 2.8 A 3 A8 R,

&

€

If temp(rowl,coll).real /= 0.0 then
Sub_thresh := sub_thresh + Temp(rowl,coll).real ** 2:
Temp_sum := Temp_sum + temp(rowl,coll).real;
Teap_count := Temp_count + 1;
End if;
End loop:
End loop:
Temp_ave := Temp _sum / float(temp count);
Sub Timit := Sub thresh * sub_tol?

elsif Quad = 9 then

Threshold := Threshold + sub thresh;

sub_thresh := 0.0; -

Put(” Threshold = *);put(threshold,2,2,0);new line;
limit :e« Threshold * Tol; -

-- Find the average value of the template pixels
Por rowl in 128 - S row ..
128 - S_row + Tri_row loop
For coll in 128 4+ S col - Tri col
128 + S_col loop -
If temp(rowl,coll).real /= 0.0 then
Sub_thresh := sub thresh + Temp(rowl,coll).real ** 2;
Temp sum := Temp Sum + temp(rowl,coll).real;
Temp_count := Temp_count + 1;
End if;
End loop:
End loop:
Temp_ave := Temp_sum / float(temp count);
Sub_limit := Sub_thresh * sub_tol?

end if;

For Row in Image’'first(l) + S row .. Image’last(l) - S_row loop
For Col in Image’'first(2) + S_col .. Image’'last(2) - S_col loop

If Quad = 1 then
Row_limitl := row - § row;
Row limit2 := Row limitl + Tri row;

col limitl := Col - §_col + Tri_col + 1; |
Col”limit2 := Col + §_col - Tri_col - 1; |
Elsift Quad = 2 then ‘
Row_limitl := Row - S row + Tri_row + 1; |
Row_limit2 := Row + §_row - Tri_row — 1; ;
Col_limitl := Col -~ § col + Tri_col + 1; |
Col_limit2 := Col + S_col - Tri_col - 1; !

Elsif Quad = 3 then
Row limitl := Row + S_row - Tri_row;
Row_limit2 := Row + S_row: - ‘
Col_limitl := Col - S_col + Tri_col + 1;

Col_limit2 := Col + § col -~ Tri_col - 1;

Elesif Quad = 4 then
Row limitl := Row - § row + Tri row
Row limit2 :e Row + s:tow ~ Tri row
Col”limitl := Col - §_col: -
Col_limit2 := Col - S_col + Tri_col

+

Elsif Quad = 5 then
Row_limitl := Row - 8_row + Tri_rowv +
Rov_limit2 := Row + $_row - Tri_row

]
-

B-36

S

Col_limitl
Col_limit2

:= Col
:= Col

Elsif Quad = 6 then

Row_limitl
Row_limit2
Col limitl
Col_limit2

t= Row
:= Row
= Col
= Col

Elsif Quad = 7 then

Row_limitl
Row limit2
col limitl
Col_limit2

:= Row
:= Row
:= Col
:= Col

Elsif Quad = 8 then

Row_limitl
Row_limit2
Col _limitl
Col limit2

:= Row
:= Row
= Col
1w Col

Elsif Quad = 9 then

Row_limitl
Row_limit2
Col_limitl
Col_lilitZ

End if;

:= Row
:= Row
:= Col
:m Col

+

+

+

S§_col -
s_col ;

S row -
S row;
s_col:
S_col +

S row -
S row;
S§ col -
S_col;

S row;
S row +
$ col;
s:col +

S row;
S row +
$ col -
s_col;

Tri_col:

Tri row;
Tri_col ;

Tri_row;

Tri_col;

Tri_row;

Tri_col;

Tri_row:
Tri_col;

Sub_corr (Image,Temp, Btmp,Num_Array, Num_sector_ array,
Row_limjitl,Row_ limit2,
Col 1xlxt1 Col 1;-;t2,
S row,S col,Row,Col,
Count ,Best row, Best_col,
limit,Threshold, Max vnl
Choice,Temp_ uvo,Tomp count,
Sub lllxt,lub thresh);

End loop:
End loop:

put("Count = ");put(count,d);new_line;
put (Best_row,6};Put(Best_col, 6); Put(an val,10,2,0);

End loop:

Threshold := Threshold + Sub_thresh;
Put (" Threshold = ");:put(thresheld,2,2,0);new_line;

Sector_loop:
loop

put{"Do you want to print the sector selections? (y/n) ");
get(ans):skip_line;new_line;
If ans = 'Y’ or ans = 'y’ then

count := 0;

put ("Enter the number of sectors to threshold the print selection "):
get(num_sector):skip_line;new_line;

for rov in num sector_array‘range(l) loop
for col in nu- sector _array‘range(2) loop
if num soctor urruy(rov col).real >= float{num sector) then
:m count + 1

count
end if;

end loop:;
end loop;

8-37

put ("Number of points in this selection region is ..."):
(put(count,2);new_line;
put ("Do you want to print these points? (y/n)..."):
‘ get(ans);skip_line;new_line;

If ans = ‘'Y’ or ans = ‘y’ then
for row in num_sector_array’'range(l) loop
for col in num_sector_array’'range{2) loop
if num sector array(row,col).real >= float(num_sector) then
put{row,4);put(col, 4); -
put(Intogor(nul_soctor*lrray(row,col).ronl),!):nov line;
‘ end if:; -
. end loop;
end loop;
end if;
else
exit sector loop:
end if; -
end loop sector_loop:

. Save_File(Image Name, Last_Image ,Num_array,Extension);

End Good-un_schvnrz:

B-38

Program: DISPLAY

Authors: Capt William Kobel and Capt Timothy Martin
Date: 1 October 1986

Language: Vax Ada

Systenm: ISL VAX/VMS

Function: This program displays files on the Evans &

Southerland PS 300 raster display using a 16 bit

psuedocolor or greyscale.

This porgram was modified by Lt Troxel to include a compact

data

procedure. This allows for a much faster display time. Also, the

display program can now be run from any terminal.

with sequential io;

with text io; use text io;

with float text io; use !loat_toxt_io;

with floct:llth:lib; use float math lib;

with integer_text io; use intogor_to;t io0:

with FORTRAN HANDLER; use FORTRAN HANDLER;

with FILE HANDLER: use PILE_HANDLER; ~-- A Kobel and Martin Package
with !HAGE_HANDLBR; use IMAGE HANDLER; -- A Kobel and Martin Package

with DECLARATION_HANDLER: use DECLARATION_ HANDLER:

Procedure DISPLAY

procedure Display is

In File Name : string (1 .. 80):
Max Row : integer:

Max Col : integer;

Last : natural;

File Error : exception;

Procedure PROCESS_FILE

Prepares file for the Evans & Southerland raster display.

Inputs: Max_Row - this must equal the row dimension of
the file to be displayed.

- “ax_Col - this must equal the column dimension of
- the file to be displayed.
procedure PROCESS FILE (Max_Row, Max_Col : in integer) is
type Direction_Type is (Up, Down, Left, Right):
type Arrovw_Record Type is
record
Row_Pos : integer;
Col_Pos : integer;
Direction : Direction_type;
ond record;
type Arrow_Array Type is array (1 .. 5) of Arrow_Record_Type;

type Video Plag _Type is (Normal, Reversed, Enhanced, Original):

Col_Boarder :t integer := 40;

B-39

OO
\ .t?t?!’a'.i'vq‘l!lb,

o A o e

ST W T AT TR TR TR TR T VAT UL T TR T TN

Arrov_Array
Ps_Array | Color

Row Boarder : integer
Max_Rowl : integer
Max_Coll : integer
Max Rov Brd : integer
Max Col Brd : integer

!-uqo Ar:ly : Illgo_Arruy_jypo (0 .7 Max _Rowl, 0

1= 10;

= Max _Row - 1;

:= Max_Col 1;

= Max_Row + Row Boarder;
i= Max_Col + Col Boarder;

Arrovw_Array Typo,
Ps Arrly Typo (1 .. Max_Row_| Brd * Max _Col Br
. Max Coll);

Ml I Al Al Aed Aol dad dhad sl Bodk dnd A A S b Bdh A e -8 A3 As Atie o o Aoa aas Ahe €an 2an A% 4. 211

d, 1 .. 4);

Red_Image Array : Display Array_Type (1 .. Max Rov _Brd, 1 .. Max Eol _Brd);
Grn Ilnqo Arrny H Dilplay_kzray_fypo (1 .. Max Row | _Brd, 1 .. Max Col a:d),
Blu . _Image Arrly : Display Arrsy Type (1 .. an_Rov_ard 1 .. Max Col Brd),

Max Value : float;
rix?_si:o : integer;
Threshold : integer;
Color Index : integer;
Red : integer:
Green : integer;
Blue : integer;
Arrow_Count : integer;
Answer : character:
Color_Flag : boolean;
Arrow_Flag : boolean;
Video Flag : Video_Flag Type;

Intensity Error : exception;

k_count

integer:

- Procedure ENHANCE_VIDEO

-- E-:ances the lower values a file to be displayed by
-- computing the log base 10 of all values. This is an
~- option which may be useful for files that have been

-- Fourier Transformed.

-- Inputs: Image_Array -

-— Threshold -

-- Outputs: Image_Array -

array which contains the un-
enhanced data to be displayed.

all un-enhanced values below
threshold will be set to zero
in the enhanced array. This
value can be used to select how
low of a value to enhance.

array which contains the enhanced
data to be displayed.

procedure ENHANCE_VIDEO (Image Artay : in out Image Array_ Type:
Threshold : in integer) Ts

begin

for Row in Imsge Array’'range(l)

loop

for Col in Image_Array’

loop

range(2)

if Image_Arrsy (Row, Col).Real ¢ float (Threshold) then

Image_Array (Row,

oend if;

Col).Real := 1.0;

Image_Array (Row, Col).Real := 10gl0 (Image_Array (Row,

ond loop?
end loop:

B-40

Col).Real);

end ENHANCE VIDEO;

m L aua an aud oo aid A8 ha- o0l BA- o Ba. o and Bl Bt

Procedure SET_ COLORS

-~ This is a color lookup table. There are 18 colors

-~ assigned; one for each of 16 possible levels,

-- one for a background color, and white which is used in
The colors are formed by combining

-- differert amounts of red, green, and blue pigment.

-- the scal

-- 1Inputs: Color_Index - an integer from 0 - 15 which

- represents the level to be

- assigned a color.

-— Outputs: Red - an integer from 0 - 255 which

- represents the intensity of red

- pigment used in the color to be

- displayed.

-- Green - an integer from 0 - 255 which

- represents the intensity of green

- pigment used in the color to be

- displayed.

- Blue - an integer from 0 - 255 which

- represents the intensity of blue

- pigment used in the color to be

- displayed.

procedure SET_COLORS (Color_Index : in integer;

Red, Green, Blue : out integer) is
begin
case Color_Index is
vhen 0 => Red := 0; Green := 0; Blue := 110;
when 1 => Red := 0 ; Green := 0; Blue := 150;
when 2 => Red := 0; Green := 0; Blue := 185;
when 3 =) Red := 0; Green :m 0; Blue := 220;
when 4 => Red := 0; Green := 0; Blue := 255;
when 5 =) Red := 0; Green := 170:; Blue := 0;
when 6 =) Red := 0; Green := 19]1; Blue := 63;
when 7 => Red := 0; Green := 225; Blue := 40;
wvhen 8 =) Red := 0; Green := 255; Blue := 30;
when 9 =) Red := 255; Green :s= 242; Blue := 100;
vhen 10 s> Red :w 255; Green := 220; Blue := 127;
when 11 =) Red := 255; Green := 191; Blue := 129;
vhen 12 => Red := 255; Green := 161; Blue := 111:
vhen 13 => Red :=« 255; Green := 130; Blue := 60;
when 14 => Red := 230; Green :s 0; Blue := 0;
wvhen 15 => Red := 170; Green := 0; Blue := 0;
vhen 99 =) Red := 0; Green := 28%5; Blue := 255;
when 999 => Red := 255; Green := 285; Blue := 255;
vhen others =) null;
end case;
end SET_COLORS;
B-41

T Teered

Procedure SET_GREYSCALE

v
-

t

This is a Greyscale lookup table.
scales assigned; one for each of 16 possible levels.
There is also a background color, and white which is
used in the scales.
combining equal amounts of red, green, and blue pigment.

Inputs:

Outputs:

begin

Red

Green

Blue

Color_Index

procedure SET_GREYSCALE

case Color_Index is

when
when
when
when

when
wvhen
vhen
vwhen
when
when
when
when
when
when
vhen
vhen
when
when
when

end case;

0 =)
1 =)
2 =>
3 =)
4 -)
5 =>
6 =)
7 =)
8 =)
9 -)
10 =)
11 =
12 =
13 =
14 =
15 =
99 =
999 =)
others

end SET_GREYSCALE;

Red :
Red :

Red

Red :

Red
Red

Red :

Red

Red :

Red
Red
Red
Red
Red
Red
Red
Red
Red

The

an integer
rfepresents
assigned a

an integer
represents
pigment used in the greyscale to
be displayed.

fr
th

gr

fr
th

There are 16 grey-

greyscales are formed by

om 0 - 15 which
e level to be
eyscale.

om 0 -~ 255 which
e intensity of red

an integer from 0 - 255 which

represents the intensity of green
pigment used in the greyscale to
be displayed.

an integer from 0 - 255 which

represents the intensity of blue
pigment used in the greyscale to
be displayed.

(Color_Index

Red, Green,

=

=

=) null;

90;

100;
110;
120;

130;
140
150;
160;
170;
180;
190;
200;
210;
220;
230;
240;
0;

255%;

Green
Green
Green
Green

Green
Green

Green :

Green
Green
Green
Green
Green
Green
Green
Green

Green @

Green
Green

Blue

T

Procedure SET_BACKGROUND

in integer;
: out integer) is

90; Blue := 90;
100; Blue := 100;
110; Blue := 110;
120; Blue := 120;

130; Blue := 130;
140; Blue := 140;
150; Blue := 150;
160; Blue := 160;
170; Blue := 170;
180; Blue := 180;
190; Blue := 190;
200; Blue := 200;
210; Blue := 210;

220; Blue := 220;
230; Blue := 2130;
240; Blue := 240;
255; Blue := 255;
255; Blue := 255;

Sets the background color.
background is set to is determined by
settings for entry 99 in the color or

The color

that the
the color
greyscales

B-42

| At M A M T A R e b S e e * Ak Al Al Mol bl bl Bak Sal Aofh ok Bl 3 -4 b ot nads alish st sibd bl nid- b il adhh s v
L 4 £ aland codialt Shnk Sk el

-- lookup tables. The entire file is set to the one
~- background color; any data must be set onto the
-- background after this procedure.

® == 1nputs: None

-- Outputs: Red_Image Array - array that contains the

- amount of red pigment needed
- to create the background

- color. The background color
-- is constant so all values in
- this array are equal.

‘ - Grn_Image Array - array that contains the
- amount of qgreen pigment needed
- to create the background color.
- All values in this array are
- eqgual.

- Blu Image Array - array that contains the

- amount of blue pigment needed
. - to create the background color.

-- All values in this array are

-- equal.

procedure 3ET_BACKGROUND (Red_Image_Array : out Display_ Array_ Type;
Grn_Image Array : out Display_ Array_ Type;

Blu_Image Array : out Display Array Type) is

beagin
‘ for Row in 1 .. Max_Row_Brd
loop
for Col in 1 .. Max Col Brd
loop - -
Color_Index := 99;
if Color Flag = false then
SET_GREYSCALE (Color_Index, Red, Green, Blue);
) else -
SET COLORS (Color Index, Red, Green, Blue);
end if; -
ROd_Illg. Array (Row, Col) := Red:;
Grn_Image Array (Row, Col) := Green:
Blu_lImage_Array (Row, Col) := Blue;
end loop; -
e end loop;

ond SET_BACKGROUND;

- Procedure SET_ARROWS -

-~ Sets arrows on the image to be displayed.
~~ The position of the arrows is determined by
-~ the contents of Arrow_Array.

-~ Inputs: Arrow_Array - array that contains arrow records

- with information on where to place

- the arrows and in which direction.

- Arrow_Count - the number of arrows to be drawn.
B-43

TTOTTETTN TOw Ly B e

- Red_Image_Array - array that contains the amount of
- red pigment for the image on which
- the arrows are to be drawn.

- Grn_Image_Array - Aarray that contains the amount of
- green pigment for the image on which
- the arrows are to be drawn.

-- Blu_Image_Array - array that contains the amount of
- blue pigment for the image on which
- the arrows are to be drawn.

¢ -~ Outputs: Red Image Array - array that contains the amount of
- red pigment for the image which now
- has arrows placed on it.

- Grn_Image_Array - Aarray that contains the amount of
- green pigment for the image which now
- has arrows placed on it.

® - Blu_Image_Array - array that contains the amount of
- blue pigment for the image which now
- has arrows placed on it.

L 4
procedure SET_ARROWS (Arrow Array : in Arrow_Array_Type;
Arrow_| “Count : in out integer;
Rod_!-ago_Arrly : in out Display Array Type;
Grn_Image Array : in out stplly Array Type;
Blu_Image_Array : in out Dxlplny Array Typo) is
@ Row, Col : integer:
Delta Row : integer:
Delta Col : integer;
Col_shift : integer range -1 .. 1;
Row_Shift : integer range -1 .. 1;
begin
Red H N H
© Green := 0
Blue := 0
While Arrow _Count > 0
loop
& if Arrow_Array (Arrow_Count).Direction = Up then

Delta Row :w 0;
Delta_Col := -3;
Rov := Arrow _Array (Arrow ! Count) .Row_Pos + Rov_nontdor:
Col := Arrow _Array (Arrov Count).Col Pos + Col_Boarder - 7;
elsif Arrow Arrly (Arrow_ Count).Direction = Down then
Deltas | Row := 0;
Delta_ “Col :m 3;
Row := Arrow _Array (Arrow | Count) .Row_Pos + Row_sonrdor;
,C Col := Arrow Aruy (Auov Count).Col Pos + Col_Boarder + 7;
elsif Arrow Arruy (Arrow Count) Direction = Left then
Delta Rov HC I N
Delta Col := 0:
Rov := Arrow _Array (Arrow Count).Row_Pos + Row_Boarder + 7;
] Col :® Arrow . _Atray (Arrov Count).Col Pos + Col_Boarder;
elsif Arrow Arrcy (Arrow_| Count).Direction = Right then
Delta | Row := -3
¢ Delta_ “Col := 0:
Row := Arrovw Array (Arrov_rount).Row_Pos + low_!olrdor -7;

B~44

L a0 e AR Ral tale NaR Sap taf ol aalh wnd aok aal Badt And Bl Aek e d b A Ach arit siti gkl Aty BACaddrake- alkiead Catia~ Mav g ".'-'._".' My o g Gd A.a-Ade b are die 1A A bie Soe & T T -."‘

s
4
B ¢
>
< Col := Arrow Array (Arrow_Count).Col Pos + Col_Boarder:
. Row :w Row - 3;
" end if;
. for Count in 1 .. 6
”_ loop
ol for Row_Shift in 0 .. 2
; loop
- for Col_shift in 0 .. 2
» loop
. o Red_Image_Array (Row + Row_Shift - 1,
Col + Col Shift - 1) := Red:
z Grn_lmage_Array (Row + Row Shift - 1,
K Col + Col Shift - 1) := Green;
, Blu_Image Array (Row + Row Shift - 1,
D
.
o
9 Col + Col_Shift - 1) := Blue:
ol end loop:
5} end loop:
2z if (Count = 1) and (Delta_Row = 0) then
‘ v Red_Image Array (Row, Col - 2 * Delta_Col / 3) := Red;
A Grn_ _Image Array {Row, Col - 2 * Delta _Col / 3) := Green;
3 Blu _Image Ar:ly (Row, Col ~ 2 * Delta_Col / 3} := Blue;
f Red_Image Array (Row - 2, Col) := Red;
i Grn _Image Array (Row - 2, Col) := Green;
Blu_xlugo_hrrly ({Row - 2, Col) := Blue;
o Red_Image Array (Row + 2, Col) := Red:
Grn Ilaqo Arrly (Row ¢ 2, Col) := Green;
& Blu_x-ago_krrly (Row + 2, Col) := Blue;
A Red |_Image_Array (Row + 2, Col + Delta Col / 3) := Red;
5" Grn_ _Image Axrly (Row 4+ 2, Col + Delta Col / 3) := Green;
;. Blu_Image Array (Row + 2, Col + Delta Col / 3) := Blue;
i ‘. Red_Image Arrsy (Row - 2, Col + Delta Col / 3) := Red;
Grn I-.qo_krtly (Row - 2, Col + Delta Col / 3) := Green;
,' llu_x-aqo_Array (Row - 2, Col + Delta Col / 3) := Blue;
’
< Red_Image Array (Row + 3, Col + Delta _Col / 3) := Red;
4 Grn_Image “Array (Row + 3, Col + Delta_Col / 3) := Green;
‘j - Blu_ _Image_ “Atray (Row + 3, Col + Delta_Col / 3) := Blue;
A ¢ Red_Image Array (Row - 3, Col + Delta_Col / 3) := Red;
q Grn lnaqc Arrcy (Row - 3, Col + Delte_Col / 3) := Green;
. Blu_lnnqo_hrrny (Row - 3, Col + Delta Col / 3) := Blue;
. end if;
. if (Count = 1) and (Delta_Col = 0) then
-; Red _Image Array (Row — 2 * Delta Row / 3, Col) := Red;
() Grn _Image_ “Array (Row - 2 * Delta Row / 3, Col) := Green;
" Blu_ _Image Arrny (Row - 2 * Delta Row / 3, Col) := Blue;
L]
)
' Red_Image Array (Row, Col - 2) := Red;
P Grn_Image_Array (Row, Col - 2) := Green;
Blu_ _Image Atrly (Row, Col -~ 2) := Blue;
)
T
At Red_Image Array (Row, Col 4 2) := Red;
> & arn . _Image Aruy (Row, Col + 2) := Green;
Blu Image Array (Row, Col + 2) := Blue;
N - -
%
3
¥
g B-45
%
L)
)
.

DI A DN G SR

’ ‘u‘:'.t ", »‘.) n‘,,:"fa' :?A‘.’a e, .,; ~ c’. WY, s’.‘x" P ‘-kfe‘»”n S ; t.'n Ccp -’

AR A it AP il Al el S A A g ol At Sk iad S aed Aaldhal- aderabe thin Aas Aie Atn S h oe Auad Seh A ah e Ak Ant e Sax et nnc Ad-hi g ARA She oen ek 2 a s aie ain aod aa o0)

Red Image Array (Row + Delta Row / 3, Col + 2) := Red;
Grn-lllgo Array {Row + Delta Row / 3, Col ¢ 2) := Green;
Blu_Image_Array (Row + Delta Row / 3, Col + 2) := Blus;
. Red Image Array (Row + Delta Row / 3, Col - 2) := Red:
Grn Image Array (Row + Delta Row / 3, Col - 2) := Green:
Blu:tlugo:Array (Row + Delta Row / 3, Col - 2) := Blue;

Col + 3) := Red:;
3, Col + 3) := Green;

Red_Image Array (Row + Delta Row
Grn_Image_Array (Row + Delta Row

NN
w

Blu_Image Array (Row + Delta Row / 3, Col + 3) := Blue;
Red_Image_Array (Row + Delta Row ,/ 3, Col - 3) := Red;
Grn_Image_Array (Row + Doltl_nov / 3, Col - 3) = Green;
. Blu_Image Array (Row + Delta Row / 3, Col - 3) :w Blue;
end if;

Row := Row + Delta_Row;
Col := Col + Delta Col;

end loop:
Arrow Count := Arrow_Count - 1:
end loop:

end SET_ARROWS:

-~ Creates the scales along the left and bottom borders.

~~ Each grid on the scales corresponds to four pixel

-- values where 8 pixel corresponds to a single value

~=- in the file being displayed. The grid colors alternate
. -- between two different colors with every eighth grid mark

-- displayed as a third color. The colors that are used

-~ are determined by the settings for entries 5, 8, and 999

-- in the color and greyscale lookup tables.

-- Inputs: None

-- Outputs: Red_lmage Array - array that contains the
® —- amount of red pigment needed
- to create the scales.

- Grn_lmage_Array - array that contains the
-- amount of green pigment needed
- to create the scales.

-- Blu_Image Array - array that contains the
. -- amount of blue pigment needed
@ -- to create the scales.

| procedure ssr_sCAL:s (Rod_!-ago_Arr.y : in out Display Array Type:
| Grn_Image_Array : in out Display Array_Type:
Blu_Image_Array : in out Displsy Array Type) is

Row_1, Row_2,
. Col_l, Col_z : integer;

-

4

XA
A

F 3 -
__\‘I‘-ll’v._

- 4

P A 4

L M AR

s n‘. » ‘4 ".\ ."‘ 5 ..' .5 L 1
3

M

)

NET NS TAAS

o 8 4 8

>

<8

o \."L' \‘ LY

L

-

' .

begin
for Row_Index in 0 .. (Max Row / 8) - 1
loop
for Col in (Col Boarder - 9) .. (Col_Boarder - 4)
loop
for Row Increment in (Row Boarder + 1) .. (Row Boarder + 4}
loop - -
Row 1 := (8 * Row Index) + Row Increment;
Row_2 := Row_ 1 + q; -
Color_Index := 5;
if Color Flag = false then
SET GREYSCALE (Color Index, Red, Green, Blue):
else -
SET COLORS (Color Index, Red, Green, Blue):
end it -
Red Image Array (Row_l, Col) := Red;
Grn_Illqo:Arrly (Row 1, Col) := Green:
Blu_Image Array (Row 1, Col) := Bluse;:
if (Row Index + 1) rem 4 /= 0O then
Color_Index := 8;
if Color Flag = false then
SET GREYSCALE (Color_Index, Red, Green, Blue);
else
SET COLORS (COlor_!ndcx, Red, Green, Blue):
end if;
Red Image Array (Row 2, Col) := Red;
Grn_Image Array (Row_2, Col) := Green;
Blu_Image_Array (Row_2, Col) := Blue:
else
Color_Index := 999;
if Color rlag = false then
SET GREYSCALE {Color_Index, Red, Green, Blue);
else
SET_COLORS (Color_lndex, Red, Green, Blue);
end if;
Red Image Array (Row 2, Col}) := Red;
Grn Image Array (Row 2, Col) := Green:
Blu Image Array (Row_2, Col) := Blue;
end if7 -
end loop;
end loop:
end loop;
for Col Index in 0 .. (Max Col / 8) -1
loop -
for Row in (Row Boarder - 9) .. (Row Boarder - 4}
loop - -
for Col Increment in (Col Boarder + 1) .. (Col_Boarder + 4)
loop

Col 1 :e (8 ¢ Col_Index) + Col Increment:
Col_2 := Col 1 + 4;

Color_Index := 5:

B-47

e A A A A Al Sl el Al Sat SA0 it A A e S atia o' ahe bl ol ol R RV SRR gl e]

it Color_rlag = false then

SET GREYSCALE (Color Index, Red, Green, Blue):;
else -

SET_COLORS (Color_Index, Red, Green, Blue):
end if;

Rod_!-ngo_Arzly {Row, Col_l) := Red;
Grn_lImage Array (Row, Col 1) := Green;
Blu_Image_Array (Row, Col 1) := Blue:

if (Col_Index + 1) rem 4 /= 0 then
Color_Index := B;

if Color_Flag = false then

SET GREYSCALE (Color Index, Red, Green, Blue);
else -

SET_COLORS (Color_Index, Red, Green, Blue);
end if;

Red Image Array (Row, Col 2} := Red;

Grn Image Artay (Row, Col 2) := Green;

Blu Image Array (Row, Col”2) := Blue;
else -

Color_Index := 999;

if Color_Flag = false then

SET_GREYSCALE (Color_Index, Red, Green, Blue)"
else

SET_COLORS (Color_Index, Red, Green, Blue);
end if;

Red Image_Arrsy (Row, Col_2) := Red;
Grn_Image Array (Row, Col 2) := Green;
Blu_Image_Array (Row, Col_2) := Blue;
end it; -
end loop:;
end loop:
end loop:

end SET_SCALES;

- Procedure SET_SPECTRUM

-- Creates the spectrum chart for the bottom of the display.
-- The 16 colors or greyscales are displayed in ascending
-— order along the bottom border.

-- Inputs: None

-~ Outputs: Red Image_Array - array that contains the
- amount of red pigment needed
- to create the scectrum.

- Grn_Image Array - array that contains the
- amount of green pigment needed
- to create the spectrum.

- Blu_Image_Array - array that contains the
- amount of blue pigment needed
- to create the spectrum.

| et i e e A

>

—— -

itk bl ol de b dadadoded and Sad Sai Aalh ol sl bad Aas cad can - af . R -aan 40

hiaciie sdiidde el dah dae Ale Abe 4la Ade 200 dbe Ahs dae o0 4ie 4t 4le 40 4 2 4.0 400 o g

procedure SET_SPECTRUM (Rod_!n-qo_hrrny : in out Display_ Array_Type:
Grn_Image Array : in out Displny_Arrly_Typo:
Blu_Image Array : in out Display Array Type) is

Count : integer:;
Spectrum_Size : integer;

begin
Spectrum Sise := Truncate (float (Max_Row) / float (16));

Color_Index := 0;
Count := 0;
for Row in Row Boarder + 1 .. Spectrum Size * 16 + Row Boarder
loop - - -
Count := Count + 1;
for Col in 1 .. 15
loop

if Color_Flag = false then

SET_GREYSCALE (Color_lIndex, Red, Green, Blue);
else

SET_COLORS (Color_!ndox, Red, Green, Blue):
end if;

Red Image_Array (Row, Col) := Red;
Grn_Image Array (Row, Col) := Green:
Blu Image Array {(Row, Col) := Blue:

end loop:

if Count = Spectrum Size then
Color Index := Color Index + 1:
Count := 0; -

end if;

end loop:

end SET_SPECTRUM;

-~ Procedure SET_IMAGE

~— Sets the Image into the three color display arrays.

~- Inputs: Image_Array - contains the data of the

- file to be displayed.

~= Outputs: Red_Image Array - array that contains the

- amount of red pigment needed

-~ to create the image.

- Grn_lImage Array - array that contains the

- amount of green pigment needed
-- to create the image.

- Blu_Image_Array - array that contains the

- amount of blue pigment needed
- to create the image.

procedure SET_IMAGE (Image Array : in Image Array_ Type:

lud_I;cqo_Array : in out DTsplny_Arzuy_Typo:
Grn_Image_Array : in out Display Array_Type:
Blu_Image_Array : in out Display Array_Type) is

B-49

Laa 4 g a0 o e o

vwvvvevl

v -y £ . 5m Sal Gal Sad Bal
e il Ak ot sndedind sled Sl S At o S B s Ach o Sk Ak A0 et A o el et A i A A den it Sasthe e Ale Ale ke AlnAie-diiestinchinciie Ahal had . T

begin

if Max Rowl = Max Coll then
for Row in reverse 0 .. Max_Rowl
loop .
o for Col in 0 .. Max Coll
loop -
Color_Index := abs (integer (Image Array (Max Coll - Col,
Max Rowl - Row).Real}):
if Color Flag = false then -
SET_GREYSCALE (Color_Index, Red, Green, Blue):
else
SET COLORS (Color Index, Red, Green, Blue):
@ end if? -

Red _Image Array (Max_Row Brd - Row, Col + Col_Boarder + 1)
= Red;
Grn_Image Array (Max_Row Brd - Row, Col + Col Boarder + 1)
- i Green;
Blu_Image_Array {Max Row_Brd - Row, Col + Col Boarder + 1)
- :« Blue;
@ end loop:
end loop;
else
for Row 1n 0 .. Max Rowl
loop -
for Col 1n 0 .. Max Coll
loop -
Color_Index := abs (integer (Image Array (Row, Col).Real)):;

c if Color rlag = false then
SET_GREYSCALE (Color_Index, Red, Green, Blue):
else
SET_COLORS (Color_Index, Red, Green, Blue):
end if;

Red Image Array (Row + Row Bosrder + 1, Col + Col Boarder + 1)
- := Red;

o Grn_Image Array (Row + Row Boarder + 1, Col + Col Boarder + 1)
- := Green;

Blu_Image Array (Row + Row Beoarder + 1, Col + Col_Boarder + 1)

:= Blue;
end loop;
end loop:
end if;

. end SET_IMAGE;

¢

-- This procedure put the image into a run length encoded format
-- that allows the Evans and Sutherland to display much faster

procedure Compact Data (Num of Cols : in out integer;
- Num of Rows : in out integer:
K Count : out integer:
Red : in Display Array_Type:
Blue : in Display Array_Type:
Green : in Display Array_ Type:
Ps_Arrly_Color : out PS_Array_Type! is

‘\

v x : integer := red'first(l);
y : integer :w red’'first(2);

B-50

rFvW7“wWrﬂ?TrW!W7R1'T"W!""""""'1""""'T'?'T'T'T'F“”"'WVFF“?!H‘F‘"V""U"'"'"'"'“'W‘W'“‘U'V'V'?""'V'V‘

next x : integer := red'first(l) + 1;
next y : integer := red'first(2);
count : integer := 1:
k : integer :m= 1;
. nus_pixels : constant integer := ((red'last{(l)~red’'first(l))+1)

*((red‘last(2)-red ' first(2))+1);
begin -- Compact Data

Por n in 1. .num_pixels-1 loop
If (red(x,y)=mred{next_x,next_y)) and
(bluo(x,y)-bluo(noxt x,next y)) and
(green(x, y)-groon(noxt x,next_y)) then

count :s count + 1:
else

PS_Array Color(k,1) := count;

PS_Array Color(k,2) := red(x,y);

PS Arrny “Color(k,3) := green(x,y);
o PS_Array Color(k,4) := blue(x,y);

k = k+l;
count := 1;
end if;

X = X 4+ 1;
next x := next x + 1;

e If x > red’'last(l) then

y = y+l:
x := red’'first(l);
next x := x+1;
next y := y;

elsif x = red’last(l) then
next x := red’'first(l);
next y := y+l;

. end if;

end loop:

PS_Array Color(k,l) := count;

PS_Array Color(k,2) := red(x,y);
PS Artny Color(k,3) := green(x,y):;
PS_Array_ | “Color(k,4) := blue(x,y):

K_Count := k;
end Compact_Data;

-- Main procedure for PROCESS_FILE

begin -- PROCESS_FILE
new_line;

6 options:
loop
new_line;
put_line (" G --> Greyscale”);
new_line;
put line (" P --> Psuedocolor”);
new_line;
put (" Select display option => ");
. get (Answer);
skip line:

B-51

case Answver is

vwhen ‘G’ | 'g’' =>
Color_Flag :=
exit Options;
@ when ‘P’ | 'p’ w=>
Color Flag
exit Options;
when others =)
new line (3);

put:lino ("Incorrect response!

new line;
end case;
. end loop Options;

Video:

loop
new_line (3);
put_line (" N

new line;

put—lino (" R -=>
’ nou:l ine;

put line (" E -->

new line;

put_line (" © -->

new_line;

put (" Select

get (Answer);

skip_line;

case Answer is

when ‘N’ | 'n’ =)

video output =>

False;

e True;

Try again.”);

Normal Video");
Reverse Video");
Enhanced Video");

Original Video"):

")

Video_Flag := Normal;

exit Video;

when 'R’ | 'r’ =>

Video_Flag := Reversed;

exit Video;
'B' ' l.l =)

Video Flag

new line (3);

" put (°

when

Set Threshold =>

:= Enhanced;

")

get (Threshold);

skip_line;
new_line;
exit Video;

when 'O’ | ‘o' =)
Video Flag := Original;
exit Video:
¢ when others =)
new line (3);
put ("You did not repond with a correct entry.
put line (" Try again.");
nou:1£no;
end case;

end loop Video:

(‘ Arrows:
< loop
new_line(3);

-: put_line ("
"o new_line;

. put_line ("
3 new_line;
16 put ("

¢ T3 qet (Answer):
. skip_line;
o

Yy

[

Select Arrow option =>

A —=> Add Arrows to Dislay"):

B --> No Arrows");

")

B-52

&

Lal an it e o

TV e W

R il = Bl ~

case Answver is
when ‘A’ | 'a’ =>
Arrow Flag := trus;
nov_lTno());
put (" Enter the number of artows to be drawn (1 - 5) =)
get (Arrow Count};

if (Arrow Count ¢ 1) or (Arrow Count > S} then
new line(3); -
put (" -- Bad Input --");
Wait;
Arrow Flag := false;
exit Arrows:

end if;

for Count in 1 .. Arrow Count
loop -
skip_Line; new_line(3);
put ("Arrow "); put(Count,3); new line(2}:
put (" Row position it should point to =) ");
get (Arrow Array(Count).Row Pos);
nov_lino(ZT: skip line; =
put (" Col position it should point to => ");
get (Arrowv_Array(Count).Col Pos};
new_line(2); skip line; -

")

put (" U -> Up D -» Down L -> Lett R -> Right");

new_line(2);

put (" Direction it should point => ");
get (Answer);

case Answer is

when ‘U’ | 'u’ =) Arrow_Array(Count).Direction := Up:
vhen 'D’ | ’'d’' =) Arrow_Array(Count) Direction := Down:
vhen 'L’ | 1’ =) Arrow_Array(Count).Direction := Left;
when 'R’ | 'r’ = Arrow_Array(Count) .Direction := Right;
when others => Arrow_Plag := false:
end case;

end loop;

skip_line:

exit Arrows:

when ‘B’ | ‘b’ =

Arrow_Flag := false;
exit Arrows;
when others =)

new_line (3);

put_line ("Incorrect response! Try again.");
nov_lino;

end case;
end loop Arrows;

new line (4);

put (" DISPLAYING ¢ ");

put (In File Name (1 .. Last));

put_lin: (" 5");

nev_line (2);

READ FILE (In Pile Name, Last, Image Array);
new_Tine; - - -

case Video Flag is
when Normal -
PIND_INTENSITY (Image Array);
vhen Reversed =)
FIND REVERSE INTENSITY (Image_Array);
when Enhanced =)
ENHANCE _VIDEO (lsmsge_Array, Threshold);

B-53

W

v

¥

YLV EEER W
@

VRV -

TRTRETET R T T Ve g

FIND_INTENSITY (Image_ Array);
when orlginal =

-- This option allows the display of an uprocessed video
-- file that is already represented in intentity levels
-~ between 0 and 15.

for Row in Image_Array’'range(l)

loop
for Col in Image_Array’range(2)
loop
if Max_Value ¢ Image Array (Row, Col).Real then
Max_Value := Image Array (Row, Col).Real:
end if; -
end loop;
end loop:;

if Max_Value > 15.0 or Max _Value ¢ 0.0 then
raise Intensity Error;
end if;

wvhen others -)
new line (3);
put—('You did not repond with 8 correct entry.");
put line (" Try again.”):
new_line:

end case;

SET BACKGROUND (Red Image Array, Grn Image Array, Blu Image Array};
SET_SCALES (Red Image Array, Grn_Image Array, Blu Image Array):
SET SPECTRUM (Red Image Array, Grn Image Array, Blu Image Array):
SET:IHAGE (I-uqo_itrly,—Rod_Ilago_Krray,“Grn Image Array,

- Blu Image Array):
if Arrow Flag = True then - -

szT_Aiaows (Arrow Array, Arrow_Count, Red Image Array,
Grn Image Array, Blu Image Array);

end if; - - - -

Compact Data (Hax_Col_Brd, an_nov_ard, K_Count, Red_Image Arrsy,
Blu_Image Array, Grn_Image Array, PS_Arrly_Color):
PS_RASTER_COLOR1 (Max_Col Brd, Max_Row_Brd, K_Count, Ps_Array Color);

exception

when Intensity Error =>
new line (2}:
put line ("Your data values exceed the maximum allowsble intensity"):
Put line ("levels. Your file must be normalized with respect to"):
put_line ("acceptable (0 - 15) intensity levels."):

end PROCESS FILE;

begin -~- DISPLAY

nev line (24);

put line (°Pile To Be Displayed On The Evans & Southerland: ");
nev line;

GET_PILE (In_File Neme, Last, Max_Row, Max Col):

it Tast @« 1 and (Tn_Pile Name (1) = 'Q’ or

B-54

|l A A At A o b g A acas Abal et e abi Akl Sl abi abi Bl bl abl s bt b ikl i abh aid nide il - alheadbh * o dd* o h* gl aukh b d “athih? L * LAt i A AL R A A A A Al A S Al ARl el A, |

L

In_File Name (1) = ’'qQ’) then
new_line (3});
put_line (” *** Leaving Display -- Good Bye ! ***");

o else

PROCESS_FILE (Max_Row, Max_Col);
end if;
exception

when PFile Error =>

p nov_l?no (121

R put_line (" Your file sigze was not [256 x 2%6) or [512 x 128)}."):
nou_lino (12):

when Name Error =>
new line (12):
put line (" ***¢ pile not in Directory ****");
new line (12);

L end DISPLAY;

€y

| 21

e Y -.-.-.-.w.w"v-mw'mwmmmwwm

¢
package FORTRAN_HANDLER is
~- This package serves as the ada-fortran interface for the
~- EZvans and Sutherland PS340 raster display fortran

‘. ~- procedures used to display image arrays.

type Ps_Array Type is array (integer range <>,

integer range ¢>) of integer:

type Display Array Type is array (integer range <>,
integer range <>} of integer;

procedure PS_RASTER_COLOR1 (Rows : in
Cols t in
K Count : in

Ps_Array :in

pragma interface (fortran, PS RASTER COLOR1);

end FORTRAN HANDLER;

8-56

integer;
integer:
integer:;
out Ps_Array Type);

pregms import _procedure (PS_RASTER_COLOR1, mechanism => reference);

touehttiah e Bl B bl dod i hoded et e AR R R A RS AR A o i d o0 AR 0 4 il Sia o sl arn abh Akt abh sabcabS Sl ath aih ahe -adt 20 s adh ohS ol udiecafs -aliridih ot S ol o aTand adih* 10 * s |

c
ctl'.ii....Q.'........'.0‘.'..ﬁl..i....."..Q.Q..t.t.....l..i............'ﬁ.QQ..
c
Commmmm e e ———— e e e - -
Cm e ——————— —— e
subroutine Ps_nuitoz_Colorl(Nu-_of_novs,Nu-_ot_Cols,K_count,Out_Pictt)
implicit integer*4 (X,Y)
integer*4 Back_Gnd(3),Color_Tbl(4,256),
+ oOut_Pictr(4,k_count)
c
c [1) Position the input image on the center of the screen
c
Xmin= (640 - Nu-_o!_Cols)/z
Xmax= Xmin + Num of Cols - 1
tmin= (480 - Num_of Rows)/2
Ymax= Ymin + Num of Rows - 1
(=S
<
¢ [2] Set up the RS-232 link
c
call Pattch(’logdevnamsIPS340/phydevtyp=ETHERNET' ,ERRHND)
C
(=4
c [3) Set up the WRLUT (write color look-up table)
c
c [3.a) Set up look up table range
c
Intns_min= 0
Intns_max= 255
call PRASLR(Intns_-in,Intns_-nx,BRnHND)
(=4
c {3.b] Set up the default if user does not want to set up his own table
c
L.vol_Val-—l
Lovol_lnc-1024/256
Nul_of_Lovols-256
do 100 J=1,Num of Levels,l
Lovc1_v-1-Lov01_Vul+Lovol_Inc
Color_Tbl(1l,J)=1
Color_Tbl(Z,J)-Lovol_Vll ! Red Color Table
Color_Tbl(J,J)-Lovol_V|1 ! Green Color Table
Color_Tbl(4,J)=Level Val ! Blue Color Table
100 continue
Index=0
call PRASLU(Nu-_of_choll,Indox,Color_TbI,ERRHND)
<
o4
E) c [4] set background color to light-blue
-. C
Le Back_Gnd(1)=0
t& Back_Gnd{2)=25%
2, Back_Gnd{(3)m255
‘ call PRAS!R(BICk_Gnd,!RRRHD)
<
<
c 15) set the lower-left corner of the image
(=4
E;
R call PRASLD(Xmin,Ymin, Xmax, Ymax ERRHND)
w, ¢
" c
w. c [6) display the image
<
¢ call PRASWP(k_count,Out_Pictr, ERRHND)
<
) B-57

6

r
4

c
¢ [7] disconnect and return to host
c

call PDTACH({ERRHND)

return

end

B b A matodnranaan- o oo ga by oan- e ain JhhaNe shl A\ obi st acd ah gt il araaghi atg' Rt gl gt At A Rl Sal el Sl Sl b i e ‘_|

’

Bibliography
(11 Kobel, Capt William G. and Capt Timothy Martin. Distortion Invariant Pattern
Recognition in Non-Random Noise. MS thesis, AFIT/GE/ENG/86D-20. School of
'. Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1986 (AD- A177598).

(2] Casasent, David and others. "Real-Time Deformation Invariant Optical Pattern
Recognition Using Coordinate Transformation," Applied Optics, 26: 938-942
(March 1987).

& [3] Casasent, David and Demetri Psaltis. "Position, Rotation, and Scale Invariaat Opt-
i ical Correlation,” Applied Optics 15 (7): 1795-1799 (July 1976).

'
!

[4] Horev, Moshe. Picture Correlation Model for Automatic Machine Recognition.
MS thesis, GE/EE/80D-25. School of Engineering, Air Force Institute of Technol-
ogy (AU), Wright-Patterson AFB OH, December 1980 (AD-A100-765).

' (5] Hsu, Yuan-Neng. er al. "Rotation-Invariant Digital Pattern Recognition using Cir-
l. cular Harmonic Expansion,” Applied Optics, 21 (22): 4012-4015 (November
1982).

(6] Messner, Richard A. and Harold H. Szu. "An Image Processing Architecture for
Real Time Generation of Scale and Rotation Invariant Patterns," Computer Vision,
Graghics, and Image Processing, 31 (1): 50-66 (July 1985).

{7] Nitzan, David and Richard O. Duda. "The Measurement and Use of Registered
Reflectance and Range Data in Scene Analysis," Proceedings of the IEEE 65:
206-220 (Febuary 1977).

(8] Grantham, 2Lt Jeffrey W. Object Recognition Using Range Images. MS thesis,
AFIT/GEP/ENP/85D-4. School of Engineering, Air Force Institute of Technology
(AU), Wright- Patterson AFB OH, December 1985 (AD-A167148).

Tong, 2Lt Carl W. Targer Segmentation and Image Enhancement Through Mul-
tisensor Data Fusion. MS thesis, AFIT/GE/ENG/86D- 55. School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December
1986 (AD-A178875).

[10] Duda, Richard O. and David Nitzan. "Low-Level Processing of Registered Inten-
*0 sity and Range Data," Proceedings of the Third International Conference on Pat-
4
b
I

4]

¢
C

DRy WV YW WV v Y Y 3 5 =

tern Recognition,:598-601 (November 1976).

(11] Duda, Richard O., David Nitzan and Phyllis Barrett. "Use of Range and
Reflectance Data to Find Planer Surface Regions," [EEE Transactions on Pattern
Recognition and Machine Intellegence, PAMI-1:259-271 (July 1979).

[12] Rogers, Dr. Steven K., Assistant Professor. Personal interviews. School of
. Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,

thesis, AFIT/GE/ENG/87D-56. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1987.

3 (14] Gonzalez, Rafael C. and Paul Wintz. Digital Image Processing. London, Amster-
dam, Don Mills, Ontario, Sydney, and Tokoyo: Addison-Wesley Publishing Com-
pany, 1977.

{15] Tong, 2Lt Carl W. and others. "Multisensor Data Fusion of Laser Radar and For-
ward Looking Infrared (FLIR) for Target Segmentation and Enhancement,”

1987.
k (13] Ruck, Capt Dennis W. Multisensor Target Detection and Classification. MS
3
4
{
t
‘ Proceedings of the SPIE 782:10-18 (April 1987).

;‘ BI-1

b v o R R S e R R AR

T R N T T N T N T T T T T W W T T T T T T Ty sy ey -y ?"‘T
A

[16] Mayo, 2Lt Mike W. Computer Generated Hologram and Magneto-Optic Spatiul
Light Modulator for Optical Pattern Recognition. MS thesis, AFIT/GEQ/87D-1i.
School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, December 1987.

[17] Oppenheim A.V. and J.S. Lim. "The Importance of Phase to Signal,” Proceeding
of the IEEE 69:529-541 (May 1981).

(18] Tallman, Lt Col Oliver Howard I1. The Classification of Visual Images by Spatial
Filtering. PhD Dissertation, AFIT/DS/EE/67-1. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, June 1969 (AD 85866,

[19] Kabrisky, Dr. Matthew, Professor. Lecture notes taken in EENG 620, Pattern
Recognition 1. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, 1986.

[20] Goodman, J.W. Introduction to Fourier Optics. New York: McGraw-Hill Book
Company, 1968.

[21] Vanderburg, Gordon J. and Azriel Rosenfeld. "Two-Stage Template Matching,”
IEEE Transactions on Computers, 26:384-393 (April 1977).

[22] Lippmann, Richard P. "An Introduction to Computing with Neural Networks,"
IEEE ASSP Magazine, 4:4-22 (April 1987).

[23] Ruck, Capt Dennis W., Masters Student. Personal interviews. School of Engineer-
ing, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, 1987.

-
L]
*
';o
1
R«
]
R -

BI-2

-
v

- nl - 2 LT »
Ut LA D I o LR -

i adncgnnoe- don aas ge- ieaie- e i JAa ohe che oa shh chd R0 N SRG S0 sem R N At SRS AR Ch 'S 'R EA MR L A Al il kAl R A ";"J'v'v‘v-l-u~u"w
C
VITA
l. First Lieutenant Steven E. Troxel was bom on 2 August 1959 in Minot, North
Dakota. He graduated from high school in Cheyenne, Wyoming in 1977 and attended
the University of Wyoming. He enlisted in the United States Air Force in December
3 1979 and was assigned to the 570th Strategic Missile Squadron, Davis Monthon AFB,
Tucson Arizona as a Missile Combat Crew Member. He was accepted into the Airman
Education and Commissioning Program in August 1981 and attended the University of
o Arizona from which he received the degree of Bachelor of Science in Electrical
Engineering in December 1983. Upon graduation, he attended Officer Training School
and was commissioned a Second Lieutenant in the United States Air Force in March
- 1984. After commissioning, he was stationed at F.E.Warren Air Force Base, Wyoming
as a Minuteman and Peacekeeper Electrical Engineer with the Technical Engineering
Branch of the 90th Strategic Missile Wing. He entered the masters program in the
9 School of Engineering, Air Force Institute of Technology, in June 1986.
Permanent address: 501 North Main
Berthold, North Dakota
€
-
-
L
VI-1
L

(d :
g

e aaat e Bae B Bon B on ab don Bt b Ak des s st S i Sl et LAal i lioief ek DA A A i A Yk S SN~ A A A A AN e b LA B R A

UNCLASSIFIED
SECURITY CLASSFICATION QF THIS AGE

<
Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188
ta REPORT SECURITY CLASSIFICATION b RESTRICTIVE MARKINGS
| UNCLASSIFLED
23 SECLRITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORTY

approved for public release;

2b DECLASSIFICATION . ! NGR
° CLASSIFICATI DOWNGRADING SCHEDULE distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GEQ/ENG/87D-3

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable) |

School of Engineering AFIT/ENG
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology

Wright-Patterson AFB, Ohio 45433-6583

P mer s ol dedasor en® - LoLPLERIRIRSE. = SEERNRNESENESE

. 8a. NAME OF FUNDING /s SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORCANIZATION (If applicable)
8c. ADDRESS (City, State, and ZiP Code) 10. SOURCE OF FUNDING NUMBERS
‘ PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO NO ACCESSION NO.

T
~

I\

11. TITLE (Include Security Classification)
POSITION, SCALE, AND ROTATION INVARIANT TARGET RECOGNITION
USING RANGE IMAGERY
12 PERSONAL AUTHOR(S)
Steven E. Troxel, B.S.E.E., First Lieutenant, USAF
13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day)]15. PAGE COUNT ‘
MS Thesis FROM 70 1987 December 137 !
16 SUPPLEMENTARY NOTATION i

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Target Recognition, Pattern Recognition, Correlation,
17 11 Image Processing, Learning Machines

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: POSITION, SCALE,AND ROTATION INVARIANT TARGET RECOGNITION
USING RANGE IMAGERY

provad pphlic release: IAW AFR 190-
! Thesis Chairman: Dr. Steven K. Rogers, Captain, USAF ‘”2‘)}’“ by nh.r’
Du ol - t.-atsp~t Development
'$ Ait dorae § oL ~-.~»,.4,we7a
p S Wignl-Futivacn Al G 4o49d
¢ 20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
FuncLassiFeorunLMiTeD [0 SAME AS RPT. {3 OTIC USERS UNCLASSIFIED
22a NAME Or RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢c. OFFICE SYMBOL
Dr. Steven K. Rogers, Captain, USAF 513-255-6027 AELT/ENG
OD Form 1473, JUN 86 Previous editions are obsolete. . 1, SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

)

lS -s :l'

A
H&S

S

UNCLASSIFIED
Security Classification of This Page

This thesis explores a new approach to the recognition of tactical targets using a
multifunction laser radar sensor. Targets of interest were tanks, jeeps, and trucks.
Doppler images were segmented and overlaided onto a relative range image. The resul-
tant shapes were then transformed into a position, scale, and rotaton invanant (PSR1)
feature space. The classifiation process used the correlation peak of the template PSRI
space and the target PSRI space as features. Two classification methods were imple-
mented: a classical distance measurement approach and a new biologically-based neural
network multlaver perceptron architecture.

Both methods demonstrated classification rates near 100% with a tue rotation
invariance demonstrated up to 20 degrees. Neural networks were shown to have a dis-
tinct advantage in a robust environment and when a figure of merit criteria was applied.

A space domain correlation was developed using local normalizaton and multistage

processing to locate and classify targets in high clutter and with parually occluded tar-

gets.

Y5>

)

-

o~
f\}
™

L)

530 3 I-’L-L:.‘\.

rrro, Y asitais PN SRR

